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I. GENERAL INTRODUCTION 

The effect of the anisotropy of the scattering in the atmosphere on 

the multipath spread of the forward scattered signals is studied in 

this thesis. It is found that the shape of the delay power spectra and 

its corresponding statistics are very dependent on the profile of the 

average anisotropy coefficient.. Several theoretical profiles and their 

corresponding delay power spectra have been studied. The corresponding 

effect on the bit error rate (BER) of binary communication systems is 

also presented. 

Several different propagation theories have been proposed for 

interpreting signals received on transhorizon radio paths. Prominent 

among these are: 1) the "reflection from stratified layers" model 

developed by Friis^aJ_. [1], and 2) the "scattering from isotropic 

turbulence" model developed by Booker-Gordon [2] and Tatarski [3]. 

However, atmospheric turbulence always contains large scale components 

which are far from being isotropic, while reflection by layers is 

dominant only when there are temperature inversions. Thus, interpreting 

transhorizon signals on the basis of an anisotropic turbulence model is 

more representative of the true nature of the atmosphere. In addition, 

the degree of anisotropy is very closely related to the dynamic 

stability of the atmosphere [4]. Birkemeier [4] has indicated that the 

degree of anisotropy affects the multipath spread of the forward scattered 

signals. Bello et aT_. [5-7] have developed a mathematical model based on 

the statistics of the delay power spectra. They have shown that the 

multipath spread is a basic parameter that affects the irreducible bit 
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error rate, produced by frequency selective fading. 

Data taken from the Iowa State University - University of Wisconsin 

RAKE radar system are used in the present study. This system operates 

over a 406 km path at 940 MHz. The RAKE receiver effectively splits the 

common volume into time delay shells. The system uses a pseudorandom 

code modulation of 5 or 10 MHz which provides a delay resolution of 0.2 

or 0-1 microseconds. A microprocessor based data acquisition and analysis 

system, designed for the tropospheric project calculates the Doppler 

spectra of each time delay shell. These spectra are further processed 

to extract the anisotropy coefficient and its variation with height. 

Direct measurements of atmospheric anisotropy have not been attempted 

due to the difficulties associated with measuring small scale refractivity 

fluctuations in three dimensions simultaneously in time and space. This 

thesis utilizes a simple model that is capable of characterizing the 

anisotropy of the scattering process. The model combines the "reflection 

by layer" theory and a "scattering by anisotropic turbulence" model 

developed by Birkemeier et [8] 

The simplified model offers definite advantages for the process of 

extracting the anisotropy coefficient from the Doppler frequency 

distribution of the received signals. 

Chapter II presents an overview of the theories of the troposcatter 

propagation; both the reflection theory and turbulence theory are reviewed 

together with the anisotropic correlation functions and their 

corresponding spectra. The forward scatter radar geometry and the 

coordinate system of the RAKE receiver are also presented. Chapter III 
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presents the simplified Gaussian shaped anisotropic model. A computer 

program is developed to calculate the theoretical received power as a 

function of the cross-path position of the scatterers for the different 

time delay shells of the RAKE receiver. These are further processed to 

extract the anisotropy coefficient. Several experimental data are 

presented which verify the ability of the model to characterize the 

anisotropy. Chapter IV presents the effects of the anisotropy variations 

on the shape of the delay power spectra and their corresponding statistics. 

Several theoretical anisotropy profiles are suggested and their 

corresponding delay power spectra and statistics are shown. The multipath 

spread parameter for each spectra is calculated. The effect of the 

anisotropy on the irreducible BER due to intermodulation distortion is 

studied utilizing Bello's intermodulation theory. Chapter V concludes 

this study and contains suggestions for further work. 
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II. REVIEW OF TROPOSPHERIC BEYOND-THE-HORIZON 
PROPAGATION AND THE RAKE SYSTEM 

A. Introduction. 

Extensive studies of beyond-the-horizon tropospheric propagation, 

both theoretically and experimentally, have been reported since the late 

forties. Numerous papers on the theory of beyond-the-horizon propagation 

have been reported in the literature, among them is the paper of Booker 

and Gordon in 1950 [2] that laid the foundations for scattering by 

atmospheric turbulence. However, the mathematical models of the 

turbulence were arbitrary and different assumptions were made. Another 

theory of beyond-the-horizon propagation was developed by 

Friis et [1]. It was based on the assumption that beyond-the-horizon 

propagation is due to reflections from a large number of randomly 

disposed layers located in the common volume. Both theories have found 

experimental verification. It seems evident that both scattering and 

reflection contribute to the phenomenon of propagation beyond-the-horizon. 

The RAKE system has been found to be of use in overcoming some of 

the multipathing problems encountered in beyond-the-horizon propagation. 

This system is capable of splitting the conrnon volume into time delay 

shells, thus providing spatial information about the received signal. 

It has been found of great use in characterizing the atmospheric 

conditions [8]. 

In this chapter, a review of the propagation theories for beyond-

the-horizon communication links is presented and the main characteristics 

of this model of propagation are shown. Also, the RAKE coordinate system 
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and its relevant parameters are presented. 

B. Scattering Theory 

According to this theory, signals arriving at the receiver are the 

result of scattering by a homogeneous random continuum of scatters of 

differing dielectric constant. The scattered fields from different 

elementary volumes are assumed to be uncorrelated, therefore, the 

scattered power is given by [9] 

"(S.ndv u.,) 

where = the transmitted power, 

G.(i), G (0) = the transmitter and receiver antenna patterns, 
respectively, 

R-i, Rp = the distances from the transmitter and receiver 
to the scattering point, and 

a(o,i) = the scattering cross section per unit volume of 
the random medium. It is defined to be the fraction 
of incident power scattered per unit volume of the 
scatterers. 

Figure 2.1 shows the geometry of scattering path and the corresponding 

parameters mentioned in Equation 2.1. 

The whole problem of scattering lies in determining the scattering 

cross section a. An expression for a is given by [9] 

a{o,i) = ^  ̂ J J* < e-,(r4) > expiK -(r'-r') dv4dv' 
(4it)^ ÔV ÔV ' « ^ ^ s 1 ^ I ^ 

(2 .2)  
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o unit vector of scattered signal 
0 scattering angle 
6 half power beam width 

Yi.ïv, take off angles at the trans, and the rec,,. 
respectively 

Figure 2.1. General troposcatter geometry 
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where dv^ and dVg are the volume elements ar r^ and r^, respectively. At 

this points it is necessary to talk briefly about the descriotipns of 

random fields and random processes. 

A random field could be a vector field like the wind velocity in a 

turbulent atmosphere or it could be a scalar field like temperature, 

humidity, or dielectric constant. Random fields, as well as random 

processes, are described by different methods. One method makes use of 

multidimensional probability distributions which are complex and lengthy; 

another method uses averages and moments of representative samples, where 

different moments represent different characteristics. The use of 

functions indicating the degree of independence between samples of the 

random variable is common. The most common functions used are: the 

correlation function, the structure function, and the spectral density 

function. These functions will be discussed brielHy since they will be 

used in describing the randomness of the dielectric constant of the 

atmosphere. 

1. The correlation function 

The correlation function is used to indicate the degree of dependence 

between two different random variables at the same instant or the same 

variable at different instants of time. Both time and spatial separation 

are considered as follows: 

BfCt^.tg) = [f(ti) - f(tg)][f*(tg) - f^(tg)] 

BfCr^rg) = [f(r^) -'f(r^)] [f*(r2) - f*{r2)] 

{ 2.3 ) 

{ 2.4 ) 
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where denotes the correlation function, f(t^) and fftg) are samples 

of the random variable at instants tp and tg, f(r^) and f(r2) are the 

corresponding functions at r^ and at a certain instant. The asterisks 

mean conjugate value, and the overbar means average value. 

2. The structure function 

The use of such functions is recommended when the mean value of a 

certain random variable is not constant. The structure function is 

used to take such variations into account by considering only changes 

after a period or distance r^, which are very small. It is defined as 

Although the structure functions are usually used to describe variables 

with varying averages, they may also be used to describe stationary 

variables. 

3. The spectral density function 

The Fourier Transform of the correlation function is the spectral 

density which is defined such that 

follows 

DfCt-,, tg) = [f(t-,) - fftg)]^ ( 2.5 ) 

DfCrp rg) = [f(r-i ) - f(r2)f • (  2 .6  )  

Bf(tp tg) = (w) exp (iœCtg-t-,) )dw 

M^l' ^2) ^ J" *f(K) exp {iK-(r2-f-,))dK ( 2 . 8  )  

(2.7 ) 
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where W^(w) is the spectral density function of the random process, 4)^(K) 

is the three-dimensional spectral density function, and L a 1/K is a 

geometric measure of the size of the eddies. The importance of the 

three-dimensional spectral density function is to indicate the energy 

content of the amplitude of turbulence at different geometric lengths. 

Random fields are generally classified as stationary or with a 

varying mean, as homogeneous and isotropic or locally homogeneous and 

isotropic, or inhomogeneous and anisotropic. Of these field categories, 

the first type is usually considered and experimentally confirmed. A 

homogeneous field is called isotropic if B^(r) depends only on r = |r|. 

For isotropic fields, D^(r) = D^(r), A homogeneous field 

is not necessarily isotropic. For example, consider the field with the 

following correlation function, 

[aCx-j-Xg) + bCy^-yg) + cfz^-zg)] . 

The latter field is the one which we are concerned with in this thesis. 

The randomness of the dielectric constant is the main cause of 

scattering in the troposphere. Following the above procedure in 

describing the random fields, the permittivity e(r, t) is usually 

considered time invariant, homogeneous and isotropic, e-j (r, t) is the 

fluctuating part with zero average. Under these conditions, 

ei(r|) > = B^drJ-rjl) = B^Cr^j) ( 2.9 ) 

where ^(r^) is the correlation function of the dielectric constant. 

In terms of the refractive index fluctuations, we can write [9], 
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Bjrd) = 4B^(rj) . ( 2.10 ) 

Following Ishimaru [9], Equation 2.2 can be written as 

a(o, i) = 27rK^ sin^(|,^(Kg) (2.11 ) 

where is the three-dimensional spectral density evaluated at 

K = Kg; it is given by 

'l'n(Ks) = J" exp(iK;.?j)dv^ . ( 2-12 ) 

Different correlation functions have been used by different authors. 

Examples of these are given below, together with their corresponding 

three-dimensional spectral densities, 

Booker-Gordon B^(rj) = <n^> eT^d^^ ( 2.13 ) 

Gaussian = <n^> ^ { 2.14 ) 

Bessel B^frj) = <n^> (^) K^(ryi) { 2.15 ) 

1 /2 
where r^ = (x^ + y^ + z^) 

r = the Gamma function, 

= the modified Bessel function of the second kind, and 

1 = the correlation distance. 

For the isotropic case, the loci of constant correlations are concentric 

spheres. The above three equations can be used to describe the 

anisotropic version of scattering by properly defining r^. The loci of 
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constant correlation become concentric ellipsoids. In this case, is 

written as 

r, = 1 [{^î-)2 + (^1)2 + ( 2.16 ) 
X y z 

where 1 , 1 , and 1 are the correlation distances in x, y, and z 
X jr Z 

directions. 

The corresponding three-dimensional spectral densities for the 

isotropic versions are found by using Equation 2.12, the results are 

4)n(Ks) = <ni> 1^ ^ (i + (K^l)^)"^ 
IT 
3 

<^n(Kc) = <ni> —^ exp (-(K 1/2)2) 
" ^ ' 8ir /F ^ 

•„(Ks) = (1+(K;1)2)-v-1-5 

where v>o. 

For the anisotropic version of the correlation functions, the 

three-dimensional spectral densities will be presented after the 

coordinate system is considered- The exponential model used by Booker-

Gordon and the Gaussian model are not able to explain the detailed 

characteristics of the scattering process. Complete knowledge of the 

scattering phenomenon depends upon the full knowledge of turbulence. 

Many authors have studied the atmospheric turbulence, the leading among 

them are Kolmogorov and Obukov. The Kolmogorov spectrum, which is based 

on the physics of turbulence is the most accepted one used in describing 

the characteristics of scattering. A detailed description of the 

Kolmogorov spectrum, as shown in Figure 2.2, is found in many texts [9-11]^ 

( 2.17 ) 

( 2.18 ) 

( 2.19 ) 
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2ir 2n 
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Figure 2.2. Kolmogorov spectrum for the three-dimensional spectral density of the 
refractive index [10] 
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and is presented briefly here for completeness. 

According to Kolmogorov theory, the turbulence eddies are 

characterized by two sizes: the outer scale of turbulence L^, and the 

inner scale of turbulence 1^. The spectrum is mainly divided into 

three regions. 

a. The input range This is the range of the largest eddies (i.e. L^) 

which are generally homogeneous but not isotropic. No specific form for 

the spectral density exists in this range. 

b. The inertial range In this range, neither production nor 

dissipation of energy takes place. The only possible means of energy 

change is by inertial transfer to smaller eddies. Such a range of eddies 

is called the inertial range. It is generally divided into two subranges, 

the bouyaot subrange in which the breaking of eddies is mainly due to 

buoyant forces, and the inertial subrange in which the breakup of eddies 

is mainly affected by wind forces. Within the inertial subrange, the 

spectral density is given by 

(j) (K) = .033 K < ( 2.20 ) 
0 0 

buoyant subrange and is the structure 

constant of the refractive index fluctuations. The turbulence in this 

range is essentially isotropic. 

c. The dissipation range In this range, dissipation of energy is 

dominant, the spectra are completely isotropic, and their magnitudes are 

very small. Usually, 
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<i>n(K) = 0 K > . 
0 

The three regions are often combined to give 

9 9 1 "11/6 p o 
4>^{K) = 0.033 (r +-y) exp (-r/Km^) 

^0 

5 92 
which is usually called the Karman spectrum, where Km = , . 

0 

C. Reflection Theory 

In the range of frequencies used in beyond-the-horizon propagation 

(100 MHz to 10 GHz), the reflection theory of Friis et [1] has been 

found to be relatively useful since it depends primarily on the wave 

length, the distance, and the size of the antennas. It serves as a guide 

for estimating the roles of the various parameters involved in beyond-

the-horizon propagation. 

According to this theory, uncorrelated signals are received due to 

reflections from random layers of different sizes that exist in common 

volume. Large, intermediate, and small layers are considered by Friis, 

however, case 2 (intermediate layers) is considered to be the most 

prevalent. The expression for the received power for this case is given 

by: 

P, - P, ̂  J { 2.21 ) 

where P^, = the same as in Equation 2.1, 

Aj, An = the effective areas of the transmitting and receiving 
antennas, 

2a = the path length, 
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A = the grazing angle at the layer, 

b = the along-the-path dimension of the reflecting 
layer, and intermediate layer size is given by 

y® < b < VRx /A, 

N = the number of layers in the common volume, and 

q = the amplitude reflection coefficient of the dielectric 
constant at the layer boundaries. For smooth 
boundaries, it is given by 

q = ^ where n integer positive. 
ISttA-^ un/^; 

Following Friis, Equation 2.21 can be written, after performing the 

integration in terms of the geometries of the antennas and the path, as 

follows: 

p _ p r 1 p4MX-| r(a/e)f(a/0)i f? 22 li 

where a = the half pov/er beam width of the antennas, 

0 = the grazing angle of the lower edge of the 
beam with respect to the chord, 

M ~ 2000 b^K-j^N = the change in gradient of the dielectric 
constant at the lower edge of the common volume. 

f(a/S) = 1 f —L_ _ 1 
(l+a/0)^ ^ 

It should be noted from the previous paragraphs that the reflection 

theory is not related in any way to the turbulent state of the atmosphere 

as is the more physical scattering theory. However, layers formed by 

relatively sharp gradients of the refractive index have been confirmed 
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experimentally and the reflection theory for such cases exhibits good 

agreement with experimental data obtained. This is due to the complicated 

nature of this mode of propagation. The interest in a better model to 

explain these anomalies led Cianos in 1978 to look for a model that 

combines both the scattering and the reflection parts. Taking into 

account that part of the signal due to reflection, Cianos [12] was able 

to deduce exponents of the scattering angle which agree well with the 

theory of scattering based on physical arguments. As will be shown 

later, reflection by layers results in large zero Doppler amplitudes of 

the received signals. Also, layering is considered to contribute very 

much to the anisotropy of the atmosphere. 

D. The RAKE System 

In 1958, R. Price and P. E. Green [13], using the principles of 

statistical communication theory, developed the RAKE Communication system 

to combat multipath effects; namely, selective fading and intersymbol 

interference. D. R. Bitzer et al. [14], in 1966, adapted the RAKE system 

to tropospheric scatter communication links. He collected data on a 

path of 250 iOn to describe a number of propagation phenomena. These 

included selective fading, envelope fluctuation, diurnal variations, 

correlation bandwidth of the medium, fading rates, diversity combining, 

and others. 

The RAKE system utilizes a wide-band signal code, having pseudo

random character, to biphase modulate the carrier frequency. At the 

receiver, an identical delayed replica of the pseudorandom code is 

correlated with the received signal to yield that portion of the signal 
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corresponding to the specific delay. By varying the delay or using a 

bank of correlators, the total received power as a function of delay 

can be resolved. Figure 2.3 shows a coordinate system for the forward 

scatter radar utilizing a RAKE receiver. Constant time delays 

correspond to confocal prolate spheroids with foci at the transmitter 

and receiver, the x coordinate is along the path, y is the cross path 

direction and z is the vertical. The origin of this coordinate system 

is usually taken at midpath. Any scattering point could be identified 

either by its x, y, z components or by its azimuth, elevation, and range. 

Usually, the signals received with the RAKE system are in the form 

of instantaneous values of the impulse response h(T,t) for each time 

delay tap. This gives insight into the time variations or fading of the 

medium. Another useful representation of the signal is the "scattering 

function", which is the Fourier transform of the correlation function 

of h(T,t), Rj,(T,t), and is given by 

V(T,fd) = J" Rn(T,t) exp (i2iTfjt)dt ' ( 2.23 ) 
—œ 

where 

R^(T,t) = <h(T,r) h*(T,r+t)> . 

The shape of V(T,f^) in the frequency variable f^ can be physically 

interpreted as a Doppler broadening with f^ as the Doppler frequency. In 

the present thesis, we will depend on the shape of the scattering function 

as related to the anisotropic nature of the atmosphere. References [8, 

15] present a good analysis of the RAKE tropospheric scattering 
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Figure 2.3. The RAKE coordinate system 



www.manaraa.com

19 

techniques to be utilized in indirect atmospheric measurements. The 

system equations for determining the constant time delay contours and 

the Doppler frequency for a RAKE sounding system are given here [8]. 

L = length of propagation path 

= C(d-x)^ + yZ + + [{d + x)^ + y^ + ( 2.24 ) 

Ç = signal time delay = L/C ( 2.25 ) 

fj = Doppler frequency 

. - ̂  ux(1-(2d/L)^) *^<0/ + «f . ( 2.26 ) 

l-16(xd/L2)^ 

In the above equations, C is the wave velocity; X is the wavelength of 

the Rf signal; and u, v, w are the longitudinal, crosspath, and vertical 

components of the wind, respectively. 

The Doppler frequency expression in Equation 2.25 can be simplified 

2 
by observing that the term l-(2d/L) is typically very small, as is 

p p 
the term (xd/L ) . Also, it can be assumed that the vertical wind, w, 

is much less than the crosspath wind, v. Under these conditions. 

Equation 2.26 reduces to 

fd = - IF ( 2.27 ) 

Since L ~ 2d, Equation 2.27 can be rewritten as 

where a is the azimuthal angle of the scatterer. 
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In the present thesis, data taken from the troposcatter radar system 

with RAKE receiver operating as a cooperative project between Iowa State 

University (ISU) and the University of Wisconsin (UW) will be utilized in 

characterizing the anisotropy of the atmosphere. The important parameters 

of this system are shown in Appendix A, the systan operates between 

Moingona, lA and Arlington, WI. Cross sections of the time delay shells 

in the y-z plane near midpath, for a 5 MHz modulation rate (0.2 y sec. 

resolution), are shown in Appendix A. 

E. Anisotropic Spectral Densities 

The anisotropic versions of the correlation functions were presented 

in Section 2.1. In order to write the anisotropic version of the 

spectral density, the components of the scattering wave number vector 

should be expressed in terms of the x, y, z axes. Referring to 

Figure 2.3, the scattering angle, 0^, is given by 

®s " V "t ( 2-29 ) 

where 

= arctan [(y^ + z^)^^^/(d-x)] ( 2.30 ) 

= arctan [(y^ + z^j^/^/d+x] . ( 2.31 ) 

The direction of the vector can be expressed in terms of two 

angles. One angle, y, is between the x-z plane and the plane containing 

the X axis, the incident ray and the scattered ray (r-x) pl-ane, is given 

by 
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Y = arctan (y/z) . ( 2.32 ) 

The other angle, y, is between the vector and y-z plane. It is 

given by 

V = (at - ar.)/2 ( 2.33 ) 

Kg can now be written as 

I = Yx + Yy + ( 2.34 ) 

where 

Kx = I Kg I sin V 

Ky = I Kg I cos y sin Y 

Kz = I Kg I cos y cos Y 

| K g l  = - ^ s i n  0 g / 2  .  

The anisotropic versions of the spectral densities corresponding to 

Equations 2.13, 2.14, and 2.15 utilizing Equation 2.12, are listed below 

as Equations 2.35, 2.36, and 2.37. 

= <"]> IxVz ( 2.35 ) 

(^n(Ks) = <n^> T [GXP -(|q|/2)^] ( 2.36 ) 

_8 

iryÇ 
4)^(Kg) = <n^> IxVz [ {v+1.5)/ (v)] (l+|q|^) ^ ( 2.37 ) 

where 
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= Kg {(l^cos^+lysin^)cos^p+l^sin^u} . ( 2.38 ) 

Near the midpath (x=o plane), y = o and Equation 2.38 reduces to 

q = K.(l^cos^Y+ l^sin^) . ( 2.39 ) 
o z y 

The anisotropic version corresponding to Equation 2.38 will be 

utilized in Chapter III since it approximates the Kolmogorov spectrum 

when V = 1/3. 
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III. A SIMPLIFIED MODEL FOR EXTRACTING THE ANISOTROPY 
COEFFICIENT FROM THE DOPPLER SPECTRUM 

A. Introduction 

Records of the Doppler frequency of signals received by a RAKE 

Forward Scatter Radar Sounding system exhibit a great deal of variability 

in the shape of the Doppler spectra. Much of this variability is due to 

winds in the scattering volume. However, even after the effect of the 

wind has been taken into account, the half power width of the Doppler 

spectrum can fluctuate a great deal. 

This effect has been explained by use of an anisotropic scattering 

model developed by Birkemeier et al. [8]. The anisotropy in the 

scattering model accounts for the differences in the correlation length 

along the different axes. In Birkemeir's model, the ratio of the 

horizontal correlation distance to the vertical correlation distance is 

defined as the anisotropy coefficient A. This coefficient is considered 

to be a basic parameter characterizing the state of the atmosphere. 

Gage et al^. E|§] suggest that there is a relationship between the degree 

of anisotropy and the dynamic stability of the atmosphere. Birkemeier [4] 

has pointed out that the degree of the anisotropy affects the multipath 

spread of the forward scattered signals. 

No direct measurements of atmospheric anisotropy have been tried 

due to difficulties in measuring small scale refractivity temporally and 

spatially. Birkemeier's model extracts the anisotropy from the Doppler 

frequency data. However, this model is not amenable to the inversion 

process due to the fact that received power versus Doppler frequency or 
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versus crosspath position must be fit to a family of theoretical 

curves using the same variables, but with A as a parameter. 

This chapter presents an approximate anisotropic scattering model 

which is easily inverted and permits evaluation of the anisotropy 

coefficient in à direct and simple manner. In Section B, the development 

of the model is given and Section C presents the experimental verification 

of the model. 

B. Development of the Simplified Model "[17] 

Figure 3.1 shows the kind of variations in the half power width of 

the Doppler spectra experimentally obtained at different periods of 

time. Broader width, as shown in Figure 3.1a, indicates strong crosspath 

winds, while smaller width, shorn in Figure 3.1b, indicates signals 

coming from layered atmospheric structure. 

The simplified model developed here combines the transhorizon fading 

model developed by Crawford, Hogg and Kummer [18] and the anisotropic 

scattering model proposed by Birkemeier et [8]. The two models will 

be discussed first, followed by a development of the simplified model. 

1. Crawford model 

In this model, Gaussian-shaped characteristics for the antenna 

patterns and the power reflection coefficient are assumed. The argument 

of these Gaussian characteristics is the azimuthal width g, which is 

related to the crosspath wind velocity, v, and the Doppler frequency, 

fy, of the received signal by Equation 2.28. After putting B = 2a, the 

result is 
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e  =  ^  =  ( 3 . 1  )  

Where the different parameters are defined in Figure 2.3. Figure 3.2 

shows the effect of the azimuthal width on the Doppler frequency. The 

antenna patterns can be expressed as 

G^(B) = exp (-6^/2(0.85B^)^) (transmitting antenna) ( 3.2 ) 

Gp(g) = exp (-6^/2(0.858^)^) (receiving antenna) ( 3-3 ) 

where and are the half power beamwidths of the transmitting and 

receiving antennas, respectively. 

The formulation of Crawford et al. [18] accounts for the scattering 

in the atmosphere by introducing a reflection coefficient function Q(g), 

which is also assumed to be a Gaussian function of g. That is, 

Q(B) = exp (-$2/2(0.856g)2) ( 3.4 ) 

where is the half power azimuthal width of the reflection coefficient 

function. The received power is proportional to the product of three 

Gaussian shaped functions of g as follows: 

Py. = Const. G^{g)G^(g)Q(B) 

which can be written in terms of g^, g^j., and g^ as follows: 

2 
P = Const, exp {-(—L- + + -^) —? } . ( 3.5) 

6/ g/ gg 2(0.85)' 

Since g is related to the Doppler frequency by Equation 3.1, the Doppler 

spectrum of the received signal can be written as 
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Figure 3.2. Factors affecting the frequency distribution of 
the received signal [18] 
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Ppffj) = Const, exp {-f//2a^) { 3.6 ) 

where 5^ is the standard deviation of P^{fj) and is given by 

(0.85V)2 6^ 

-p 
Since the half power width of the composite Doppler spectrum, g , can be 

~ 2  2  
inferred from the received signal data, and since 6 includes Sg » the 

-O 
half power width of the reflection function, Q(6), contains 

significant information about the state of the atmosphere. 

2. Birkemeier's anisotropic model 

The Crawford model is based on a theory of "reflection from layers" 

presented in Chapter II. This theory does not have the direct connection 

to the turbulent state of the atmosphere that characterizes the 

scattering theories developed by Tatarski [3] and others [2] presented 

in Section II.B. In an effort to resolve discrepancies between theory 

and observation, an anisotropic version of the turbulence theory of 

scattering was developed by Birkemeier et al. [8]. The distinctive 

feature of this model is the introduction of different correlation 

distances to characterize the structure of turbulence along different axes. 

The different forms of the anisotropic correlation functions and their 

corresponding spectra are presented in Chapter II. The formula used by 

Birkemeier is the one given by Equation 2.37, corresponding to the 

Bessel correlation function. Under the condition, 1^ K»1 (i=x,y,z), 

the resulting spectral density of position function has the form of a 
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power law as follows: 

<f)(Kg) % l^lylz < n? > q"P ( 3.7 ) 

2 
where p is taken to be 11/3, and q is given by Equation 2.38. Near 

2 
midpath q is given by Equation 2.39, which is repeated here for 

convenience: 

? ? ? _l/2 
q = Kg [1^ cos Y+ly sinr] 

Defining A = 1^/1^ as the "coefficient" of anisotropy and substituting 

by the value of = (|^) sin (Gg/2) in Equation 3.7, we get 

<j)(Kg) - A^lQ^^<n^>(^ sin8g/2)"TT/3Xcos2Y+A2sin2y)^ll/6 ^ 3.8 ) 

where the horizontal correlation distances are assumed equal and the 

vertical correlation distance remains equal to the isotropic value 1^. 

Equation 3.8 can bé written as 

OfKg) = const. A^(|^sin0g/2)"''''/^(l+(A2-T)sinS')""^®. ( 3.9 ) 

Since we are considering data taken from a time delay shell by means of 

o 9 1/2 
a RAKE receiver system, the quantities Zj = (z +/") , 0^/2 are 

approximately constant for a given time delay tap. Substituting by 

siny = y/Zj, Equation 3.9 can be written as 

9 ? v2 -11/6 
(j>(Kg) - Const. A [1+(A —1) ^ ^ . ( 3.10) 

This function can be expressed in terms of the azimuthal width, 

since sin6/2 =3/2 = y/d. Equation 3.10 can be written as 
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P ? _2 -11/6 
*(K_) = const. A": [1+(A^-1) ^—|-] . ( 3.11 > 

3. Developing the simplified model 

In order to exploit the utility of the Gaussian model developed by 

Crawford, yet incorporate the scattering model based on the theory of 

anisotropic turbulence, the anisotropic scattering model is fit to an 

equivalent Gaussian curve. This process matches the two curves given 

by Equations 3.4 and 3.11 at the maximum value, 3=0 and at the half 

power point where 3 = 6^ in the Gaussian model. In developing this 

equivalence, it is necessary that 

9 1.838 Zj 

The resultant form of Equation 3.11 becomes 

*(B) = Const. A? [l+0.4595(e/eg)2]-11/G _ ( 3.13 ) 

The resulting expression describing the equivalent Gaussian approximation 

to <i)(Kg) as a function of y is 

0(K ) = Const. A^ exp [- ^.506(A -l)y—^ ( 3.14 ) 

^T 

when A = 1, <})(Kg) = Const, and the shape of the Doppler spectrum of the 

received signal is controlled by the antenna patterns, the volume of 

the time delay shell, and the scattering angle. This is the isotropic 

turbulence scattering situation. A comparison of the anisotropic 

scattering model with the equivalent Gaussian curve is shown in 
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Figure 3.3. Note that the two curves coincide at 3/3^ = 0 and 3/3^ = 1; 

also the disagreement between the two curves is less than three percent 

for values of 3/3^ less than 1.1. 

In order to extract the anisotropy coefficient A from Doppler 

distribution of the power received by a RAKE system, it is necessary to 

consider the effect of the different variables such as antenna patterns, 

scattering angle and volume for each time delay shell. In this process, 

it is most helpful to know the fraction of the received power emanating 

from a differential width in the cross path direction for each time 

delay shell for isotropic scattering. These calculations are performed 

by a computer program developed for this purpose. The program utilizes 

the radar equation, assuming Gaussian antenna patterns of 2.6° beam 

width and isotropic scattering in the inertial subrange of Kolmogorov 

spectrum. The computer program is shown in Appendix B. 

The normalized differential power versus y curve is approximately 

Gaussian in character and can be represented by an equation of the form 

Pj(y) = Cjj exp ( 3.15 ) 

where the index j indicates the tap number corresponding to the jth 

time delay shell and the index I means isotropic scattering. This 

expression is combined with the equivalent anisotropic scattering 

function given by Equation 3.14. The result is 

Pj(y) = Aj^ Cjj. exp [-{a;j + (Aj^ - D) y^] • ( 3.16 ) 

4 

Equation 3.16 can be expressed in terms of the Doppler frequency, f^. 



www.manaraa.com

32 

exp -0.692(9/6*) 

1+0.4595(6/6.) 

Figure 3.3. Comparison of the anisotropic scattering model 
with the equivalent Gaussian model 
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instead of y by using the relationship given in Equation 2.27, written 

in the following form, 

y " - M • 

The result is 

l'j(fd) = ^Ij ^ • ' 3.17) 

^ j 

In the case of ISU-UW Radar system. Equation 3.17 can be written as, 

''j(fd) = c„ exp [- ̂  {A„ 4.(A.2-1)) f/] •( 3.18) 

j 

where v is the crosspath wind in m/sec. 

The received signal from a given tap can be processed through a 

Fast Fourier Transform routine to determine its Doppler spectrum. This 

data is then fit to an equivalent Gaussian curve of the form 

Pj(fd) = Cgj exp [-Bjf/] . ( 3.19) 

If the crosspath wind, v, is known or can be estimated, one can 

determine the anisotropy coefficient A by equating the argument of the 

exponential term of Equation 3.18 to the exponential term of 

Equation 3.19. That is, 

^ [a,, + - 1)] = B, ( 3.20) 
'j =7 ' 

from which 

•  ( 3 . 2 1 )  
BUV.Z z,^ 1/2 
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The parameters a^j, Vj and Bj are assumed to be known, so the remaining 

unknown is the anisotropy coefficient Aj, which can be readily determined. 

Next, the calculations and experimental data required to extract the 

value of A are presented. 

C. Experimental Verification of the Simplified Model 

The different parameters encountered in Equation 3.21 will be 

presented and discussed. 

1. The isotropic component of the argument a^ 

The normalized differential scattered power emanating from a 

differential crosspath distance is calculated from the radar equation 

where the power scattered from a scatterer at x, y, z can be written as 

Gf(x,y,z) G (x,y,z) 
P~(x,y,z) ~ s— • p— a (i,o)dxdydz . ( 3.22 ) 
^ ^ 4TrR^^ 4TrR2'^ 

The parameters in the above equation can be written in terms of 

x, y, z coordinates for the RAKE system as follows: 

R^^ = (d-x)2 + z^ + yZ 

is the distance from the transmitter to the scattering point. 

Rg^ = (d+x)2 + z^ + yZ 

is the distance from the receiver to the scattering point. 

The antenna patterns are assumed to be Gaussian in shape. This is 

an often used assumption which is simple and quite accurate. In terms 

of the azimuth and elevation angles of the scattering point, measured 



www.manaraa.com

35 

from the beam axis, the patterns can be written as follows: 

\ " ""to {-(102) [(g—) + (^) ]} 
28+ 2 2<J). 2 

J. / t\ ( 3.23) 

3.24 ) 

where 0^ and (jj-j are the half power beamwidths of the transmitting 

antenna in the vertical and the horizontal, respectively; and ©g and 

are the half power beamwidths of the receiving antenna in the vertical 

and horizontal, respectively. a(o,i) is the scattering cross section 

given by Equation 2.11, which for isotropic scattering following the 

Kolmogorov spectrum, is given in terms of 0^ as 

The details of these calculations and the computer program developed 

for this purpose are given in Appendix B- Here, representative samples 

of these calculations together with their corresponding plots for the 

different conditions of elevation and delay resolution are presented. A 

Gaussian fit for these curves is also done. Figures 3.4 and 3.5 show 

the calculations for unsymmetrical elevation conditions in which the 

elevation of the receiver beam is 0.5° and that of the transmitter is 

1.1°. These elevations result in sufficient received power for the 

experiments. Two different resolutions of 0-1 and 0.2 microseconds are 

used corresponding to modulation frequencies of 10 and 5 MHz. 

Figures 3.6 and 3.7 show the calculations for symmetrical elevations of 

2.4° for both the transmitter and the receiver. The plots are given for 

o(0g) = 0.03C^U ^X'^'^^sin^x sin"TT/3(Q^/2) . sin X sin ( 3.25 ) 
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Figure 3.4. Isotropic normalized received power vs crosspath position for taps 2, 5 and 11 
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the same modulation frequencies of 10 and 5 MHz. Other similar plots 

are generated for the whole common volume. 

In order to extract the parameter a^j in Equation 3.20, a Gaussian 

least square fit for the curves is performed for all the taps included 

in the coiimon volime. For the samples presented, the Gaussian fit is 

shown on the corresponding curve beside its tap height. It should be 

noticed that the parameter a^ for a given elevation and resolution tends 

to decrease as the tap height increases, and reaches a minimum before 

it increases again. 

2. The crosspath wind speed 

The crosspath wind plays an important role in determining the 

Doppler frequency, as shown in Chapter II, Equation 2.27. The wind data 

used in our analysis is a forecasted wind aloft from the nearest 

meteorological station to the common volume. This station is at Dubuque, 

Iowa, which is about 50 Kn from the line joining the transmitter at the 

Pick Observatory, Ames, Iowa and the receiver at Arlington, Wisconsin. 

This line is 70° East of North. Table 3.1 shows a sample of the 

forecasted wind at Dubuque, Iowa on April 2, 1981. 

It should be emphasized here that the wind data used in our 

analysis is a forecasted wind near the common volume. This is all we 

have at the present time, while actual crosspath. wind at the common 

volume should be used in Equation 3.21. This problem arises whenever 

one attempts to use Doppler frequency information to determine the 

anisotropy coefficient and it is independent of the scattering model 

employed in the process. Birkemeier et al. [19] have shown that the 
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Table 3.1. Wind aloft at Dubuque on April 2, 1981 

Height in meters Wind speed in m/s Direction from North in degrees 

3658 16.923 260 

5486 25.641 270 

7315 30.769 270 

9144 37.436 280 

10363 42.564 280 

11887 45.641 280 

RAKE system is capable of measuring the cross path wind. To do so 

requires that a characteristic wind "signature" be recognized in the 

scattering function plot. Because this method requires the analysis of 

the spectra of several time delay taps at a given instant of time, it will 

not be used in our analysis. 

3. The coefficient Bj 

The data coming from the RAKE receiver are in the form of voltages, 

both the inphase "I" and the Quadrature "Q" components are obtained. A 

microprocessor based data acquisition and analysis system developed 

especially for the troposcatter project at ISU is used in calculating 

the Doppler spectra of the received signal. This system has two parts; 

one at the receiver site in Arlington, WI that sequentially samples both 

the I and Q components of the signal for each tap at a rate of 28.41 

samples/sec. The sampled data are digitized and recorded on a tape 
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cassette for further processing. Information such as date, time, tap 

given, and tap gain are also recorded at the beginning of each tap 

record. The second part of the data acquisition system is in Ames,Iowa. 

This part processes the recorded data, calculates the Fast Fourier 

Transform and plots the Doppler spectrum for each tap. Samples of the 

form of the output plots are shown in Figures 3.8 through 3.10. These 

samples correspond to data taken on November 20, 1981. The antenna 

elevations were 1.1° and 0.5° for the transmitter and receiver, 

respectively. The modulation frequency was 5 MHz. The samples show the 

nature of the variations in the half power width of the Doppler spectra. 

In tap 14, the width is comparably smaller with respect to tap 1 which 

is a typical representative. Tap 3 shows a broadening of the Doppler 

spectrum. 

The coefficient Bj in Equation 3.21 is found by a Gaussian least 

square fit in the form of Equation 3.19 for the Doppler spectrum for each 

tap. Equation 3.19 can be put in a convenient form for linear 

regression as follows: 

10 log^^P(fj) = 10 log^oCy - (lOBjlog^Qe)f/ . ( 3.26 ) 

Thus, a regression between the received power in dB, 10 logP(f^), 

2 
and the Doppler frequency squared f^ will give the first term and the 

factor between parentheses in Equation 3.26, which includes Bj. The 

data are fitted to points from around the zero Doppler out to those 

points for which the power is well below the 3dB level, since we are 

interested only in the half power width of the Doppler spectrum. It is 
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found that 10 data points above and below the zero Doppler, besides 

the zero Doppler point, together with intermediate cross path wind speed 

give the most satisfactory anisotropy coefficient. A short program is 

written to calculate the parameter Bj and Cgj for each tap based on the 

data points for that tap. 

4. Illustrative examples 

All the parameters needed for the inversion process to get the 

anisotropy coefficient A from Equation 3.21 have been discussed in the 

preceding section. Since we do not have the facilities for radio 

sounding at midpath to get more accurate meteorological information, no 

concentrated runs over several consecutive days were performed. 

Instead, runs every two or three weeks were carried out through 1981 and 

1982. Forecasted wind information aloft, which is provided by the 

National Weather Service Office in Des Moines, was used. 

Among the data available, the analysis for data of April 2, 

November 20, 1981 and March 11, April 6, 1982 are presented. The 

results are shown in the form of variation of the anistropy coefficient 

A with tap number (height, or delay) in Figures 3.11 through 3.14 for 

the mentioned dates. Tables 3.2 through 3.9 suimiarize the necessary 

calculations. Two runs are usually shown for each date to show the 

stationarity of the atmosphere and to get some kind of average value of 

A. In all the figures, the two runs for each day show nearly the same 

type of variation of A with tap numbers which indicate that the atmosphere 

is stationary during the course of the measurements. It should be 

noticed that due to some difficulties in the data taking or reading the 
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Table 3.2. Data of April 2, 1981, Run 1; Trans. Elevation = 1.1°, Rec. 
Elevation = 0.5°; Resolution = 0.1 microseconds 

Tap 
# 

Zy(Km) V(m/s) Ln Pffj) 10 log P(fj) 

1 5.145 8.46 0.073-0.354 yZ 50.28-59.26 13.65 3.34 

2 5.708 8.46 0.093-0.287 yZ 51.29-53.47 12.31 3.6 

3 6.22 8.46 0.115-0.245 yZ 49.57-35.36 8.14 3.0 

4 6.692 ,8.46 0.112-0.221 yZ 49.95-45.38 V 10.45 3.95 

5 7.134 12.82 0.106-0.204 yZ 53.16-48.41 V 11.38 7.37 

6 7.549 12.82 0.100-0.192 yZ 46.46-57.98 13.35 8.54 

7 7.942 12.82 0.092-0.184 yZ 53.38-63.56 fd' 14.64 9.45 

8 8.317 12.82 0.083-0.178 yZ 52.20-43.82 V 10.09 8.09 

9 8.676 12.82 0.0725-0.175 / 50.44-35.43 fd' 8.16 7.49 

10 9.021 15.38 0.062-0.173 y2 48.92-39.31 9.05 10.T 

11 9.353 15.38 0.050-0.174 yZ 46.66-20.99 4.833 7.36 

12 9.673 15.38 0.039-0.176 y2 42.78-32.18 7.41 9.69 

13 9.983 15.38 0.027-0.182 yZ 41.22-43.19 fd' 9.94 11.72 

15 10.577 15.38 0.004-0.203 / 38.24-58.88 fd' 13.56 14.6 

17 11.138 24.06 -0.017-0.250 y^ 38.22-58.32 fd' 13.43 24.31 
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Table 3.3. Data of April 2, 1981, Run 2; Trans. Elevation = 1.1°, Rec. 
Elevation = 0.5°; Resolution = 0.1 microseconds 

Tap 
# 

ZyfKm) V(m/s) Ln Pffj) 10 log P(fj) Bj Aj 

2 5.708 8.46 0.093-0.287 yZ 50.42-36.94 8.51 2.71 

3 6.22 8.46 0.115-0.245 yZ 54.66-51.68 11.94 3.94 

4 6.692 8.46 0.112-0,221 yZ 50.96-64.49 f/ 14.85 4.96 

5 7.134 12.82 0.106-0.204 yZ 56.71-49.21 fjZ 11.33 7.36 

6 7.549 12.82 0.100-0.192 yZ 56.23-40.74 f^^ 9.38 8.59 

7 7.942 12.82 0.092-0.184 yZ 60.84-34.79 f^^ , 8.01 6.77 

8 8.317 12.82 0.083-0.178 yZ 57.33-43.33 9.98 8.04 

9 8.676 12.82 0.073-0.175 yZ 56.88-41.86 f^^ 9.64 8.23 

10 9.021 15.38 0.062-0.173 yZ 58.18-33.16 7.63 9.2 

11 9.353 15.38 0.050-0.174 yZ 55.73-30.05 f^^ 6.923 9.03 

12 9.673 15.38 0.039-0.176 yZ 55.88-37.24 f^^ 8.57 10.5 

13 9.983 15.38 0.027-0.182 yZ 54.09-26.49 f^^ 6.14 8.94 

14 10.284 15.38 0.015-0.19 yZ 51.68-32.95 f^^ 7.59 10.38 

16 10.861 24.06 -0.007-0.221 yZ 51.32-44.06 fjZ 10.14 20.55 

18 11.409 24.06 -0.026-0.297 y^ 46.16-42.21 fjZ 9.72 20.95 
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Table 3.4. Data of Nov. 20, 1981, Run 1; Trans. Elevation = 1.1°, Rec. 
Elevation = 0.5°; Resolution = 0.2 microseconds 

Tap 
# 

Zj(Kni) V(m/s) Ln Pffj) 10 log P(f^) Aj 

1 5.412 14.36 0.079-0.32 yZ 52.83-38.89 f/ 8.95 5.39 

2 6.447 14.36 0.112=0.233 / 55.78-30.86 7.11 5.75 

3 7.335 15.96 0.103-0.198 yZ 60.98-40.27 fy^ 9.27 8.59 

4 8.126 15.92 0.087-0.181 / 52.05-40.44 9.31 9.56 

5 8.845 15.92 0.067-0.174 yZ 56.69-46.89 f/ 10.88 11.27 

6 9.51 18.46 0.045-0.175 / 49.77-39.66 f/ 9.13 12.99 

7 10.131 18.46 0.021-0.185 yZ 44.77-31.32 f/ 7.21 12.17 

8 10.717 18.46 -0.002-0.211 / 52.64-27.96 6.44 12.02 

9 11.272 16.41 -0.022-0.27 yZ 54.87-35.47 f/ 8.17 12.45 

10 11.801 16.41 -0.038-0.463 y^ 54.13-49.57 11.41 15.15 
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Table 3.5. Data of Nov. 20, 1981, Run 2 
Elevation = 0.5°; Resolution 

; Trans. Elevation 
= 0-2 microseconds 

- 1.1°, Rec. 

Tap 
# 

Zy(Km) V(m/s) Ln P(f^) 10 log P(fj) Bj 

1 5.412 14.36 0.079-0.32 yZ 57.17-39.34 9.06 5.42 

2 6.447 14.36 0.112-0.233 yZ 59.01-58.15 fjZ 13.39 8.2 

4 8.126 15.9 0.087-0.181 yZ 52.23-42.04 f^^ 9.68 9.76 

6 9.51 18.46 0.045-0.175 yZ 54.29-37.45 8.62 12.6 

7 10.131 18.46 0.021-0.185 yZ 53.30-33.38 7.69 12.59 

8 10.717 18.46 -0.002-0.211 yZ 46.69-21.65 f^^ 4.98 10.41 

9 11.272 16.41 -0.022-027 yZ 52.67-33.26 7.66 12.0 

10 11.801 16.41 -0.038-0.463 y^ 51.60-43.567fj2 10.03 14.01 
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Table 3.6. Data of March 11, 1982, Run 
Elevation = 1°; Resolution = 

1 ; Trans. Elevation 
: 0.2 microseconds 

= 2.5°, Rec. 

Tap 
# 

Zj(Km) V{m/s) Ln P(fd) 10 log P(fj) Bj 

1 5.412 12.18 0.053-0.97 yZ 51.01-56.04 fjZ 12.9 4.2 

2 6.447 12.18 0.070-0.421 yZ 55.77-23.15 f^^ 8.55 4.77 

3 7.335 16.43 0.075-0.293 yZ 57.47-20.96 f^^ 4.83 5.91 

4 8.126 16.43 0.077-0.235 yZ 60.4-29.694 f^^ 6.84 8.24 

5 8.845 16.43 0.086-0.201 yZ 56.99-28.96 f^^ 6.67 8.93 

6 9.51 18.65 0.101-0.179 yZ 55.4-12.085 fjZ 2.78 6.75 

7 10.131 18.65 0.122-0.163 yZ 56.95-12.20 fjZ 2.81 7.31 

8 10.717 18.65 0.131-0.153 yZ 49-97-11.50 fjZ 2.66 7.53 

9 11.272 23.17 0.122-0.149 yZ 53.46-29.33 f^^ 6.75 16.73 

10 11.801 23.17 0.108-0.147 y^ 53.45-26.66 f^^ 6.14 16.67 
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Table 3.7. Data of March 11, 1982, Run 2 ;  Trans. Elevation = 2.5°, Rec. 
Elevation =1°; Resolution = 0.2 microseconds 

Tap Zj(Km) V{m/s) Ln P(fj) 10 log Pffj) 

1 5.412 12.18 0.053-0.97 yZ 49.02-41.83 9.63 2.94 

2 6.447 12.18 0.07-0.421 yZ 55.47-35.28 V 8.12 4.59 

3 7.335 16.43 0.075-0.293 yZ 60.33-39.06 8.99 8.56 

4 8.126 16.43 0.077-0.235 yZ 57.24-34.54 V 7.94 8.96 

5 8.845 16.43 0.086-0.201 yZ 58.4-24.126 5.55 8.05 

6 9.51 18.65 0.101-0.179 yZ 60.08-21.76 5.01 9.49 

7 10.131 18.65 0.122-0.163 yZ 57.97-18.64 V 4.29 9.32 

8 10.717 18.65 0.131-0.153 y^ 56.43-9.280 fd' 2.14 6.59 
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Table 3.8. Data of April 6, 1982, Run 1 
Elevation = 2.0°; Resolution 

; Trans. Elevation = 
= 0.2 microseconds 

O
 

in
 

C
M

 il 

Rec. 

Tap 
# 

Zj(Km) V(m/s) Ln P(fj) 10 log P(fj) 

2 6.447 18.68 0.045-0.648 yZ 44.63-45.93 f^^ 10.58 8.96 

3 7.335 20.87 0.008-0.355 f 45.34-56.04 f^^ 12.99 13.41 

4 8.126 20.87 0.045-0.256 yZ 56.34-46.34 f^^ 10.67 13.57 

5 8.845 20.87 0.112-0.208 yZ 58.97-41.44 f^^ 9.54 14.0 

6 9.51 24.42 0.143-0.178 yZ 58.43-26.57 f^^ 6.11 14.1 

7 10.131 24.42 0.162-0.158 yZ 57.98-32.25 f^^ 7.43 16.67 

8 10.717 24.42 0.165-0.145 yZ 62.68-24.11 fjZ 5.55 15.19 

9 11.272 24.75 0.165-0.135 yZ 57.44-30.4 fjZ 7.0 18.29 

10 11.801 24.75 0.163-0.1275y2 58.45-32.59 f^^ 7.5 19.86 
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Table 3.9. Data of April 6, 1982, Run 2 
Elevation = 2.0°; Resolution 

; Trans. Elevation • 
= 0.2 microseconds 

= 2.5°, Rec. 

Tap 
# 

Zy(Km) V(m/s) Ln P(fj) 10 log Pffj) Gj 

2 6.447 18.68 0.045-0.648 yZ 53.14-4.77 fjZ 14.91 10.95 

3 7.335 20.87 0.008-0.355 58.56-37.39 8.61 10.77 

4 8.126 20.87 0.045-0.256 yZ 60.41-42.72 fjZ 9.84 12.99 

5 8.845 20.87 0.112-0.208 yZ 59.33-37.86 8.72 13.35 

6 9.51 24.42 0.143-0.178 yZ 60.6-29.297 6.74 14.85 

7 10.131 24.42 0.162-0.158 yZ 58.69-25.88 5.96 14.87 

8 10.717 24.42 0.165-0.145 yZ 55.79-19.61 f/ 4.51 13.63 

9 11.272 24.75 0.165-0.135 yZ 52.74-27.16 6.25 17.25 

10 11.801 24.75 0.163-0.1275y2 60.61-28.97 6.67 18.69 
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taps, some of the data corresponding to certain tap are missed. 

Examining these figures, one notices that data of April 2, 

November 20, 1981 and March 11, 1982 exhibit a larger variability than 

that of April 6, 1982. A general feature of the data is an increase of 

the anisotropy with height (tap number), leveling off at intermediate 

heights before it starts to increase again at large altitudes. 

Figure 3.11 starts with a small value of A near the grazing height 

(taps 1, 2) and then levels off from tap 6 to tap 13 before it starts to 

increase more rapidly at tap 14. In Figure 3.12, the anisotropy increases 

more rapidly until tap 6 before it levels off. Figure 3.13 exhibits an 

increase to tap 3 and then levels off. Figure 3.14 is characterized by 

high value of anisotropy and less oscillations. 

At this point, it is instructive to see the general variation of 

the anisotropy with height obtained by other experimenters. The only 

information available is that of Birkemeier in his report of 1974 to the 

Rome Air Development Center [4]. Figure 3.15 summarizes his results on 

the anisotropy variation. He found the values of A from both layer 

tracks and the zero Doppler signal enhancement over that predicted by 

balloon measurements of the refractive index fluctuation (AC^ ). The 

results show the general trend of increase of A with height starting 

with a nearly isotropic, A = 1, near grazing and increasing to about 

A = 6 before it levels off with increasing height. It should be noticed 

that the values of A shown in Figure 3.15a are average values for each 

tap. Values of A up to 30 in each tap were reported. This feature of 

variation of A exists in our data, which indicates that our model gives 
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a reasonable estimate of A. 

Another aspect that gives a clue about the variation of the 

anisotropy with height is its relation to atmospheric stability. A 

suggested relation between the anisotropy and the stability measured by 

Birkemeier [4] is A = 1o9io'^t> where R- is Richardson's number for 

determining atmospheric stability. Values of R- < 0 indicate turbulence 

and the scattering is considered to be isotropic, i.e. A = 1. 

R. ^0.25 indicates high stability. A general feature of atmospheric 

stability is its increase with height and a corresponding increase of A 

will follow the same trend. This is clear in Figure 3.15b. 

Our data are supported by the above-mentioned literature, except for 

the sudden increase in the anisotropy coefficient at higher altitude. 

This is believed to correspond to the tropopause height at which a high 

degree of stability will result in higher values of the anisotropy 

coefficient. 



www.manaraa.com

62 

IV. THE EFFECT OF ANISOTROPY ON THE DELAY 
POWER SPECTRA AND MULTIPATH SPREAD 

OF TROPOSCATTER SIGNALS 

A. Introduction 

The shape of the delay power spectra of signals received on scatter 

communication links plays a very important role in the performance of 

these links. Bello and Ehrman [7] have shown that the multipath spread 

(A) is a basic parameter that affects the irreducible BER produced by 

frequency selective fading. However , Bello's model is based on average 

isotropic atmospheric conditions. Several studies [20, 21] to improve 

the ability of Bello's model to accurately predict the delay power 

spectrum of troposcatter links of different characteristics have been 

reported. It is believed that the delay power spectra could not only 

vary from one link to another depending on the path geometry and the 

antenna beam width, but also could vary on the same link depending on 

the state of the atmosphere. 

In this chapter, the more realistic description of scattering in 

terms of thé anisotropic model presented in the previous chapter is 

utilized in the calculations of the delay power spectra. Several 

profiles of the anisotropy coefficient are used and their corresponding 

spectra are shown. The main effect of the delay spectra on received 

signals appears in the form of intermodulation distortion. Several 

studies on this phenomenon have been reported [6, 22, 23], among which 

we utilize the one reported by Bello and Nèlin [6] because it is more 

general and more complete. Intermodulation distortion results in an 

irreducible error in digital troposcatter transmission [7]. 
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Section B describes the calculations used to find the delay power 

spectra based on an anisotropic scattering model. Section C shows 

several theoretical anisotropy profiles which are used to demonstrate 

the effect of anisotropy on the delay power spectra. The probability 

density function of the intermodulation distortion and its sensitivity to 

the anisotropy profiles together with the irreducible error probabilities 

are also shown in Section C. Section D presents the experimental results 

for the measurements of the multipath spread and compares them with 

calculations based on the anisotropic model. 

B. The Description and Calculations of Delay Power Spectra 
Based on an Anisotropic Model 

In 1969, Bello introduced a more physical characterization of the 

troposcatter channel in the time domain and presented the concept of 

the delay power spectrum which represents the average path gain as a 

function of multipath delay. On a short time basis, the troposcatter 

channel is regarded as a continuum of statistically stationary, 

independently fading paths, each providing complex Gaussian signal 

fluctuations. The resulting envelope of the received carrier has a 

Rayleigh fading characteristic. 

The troposcatter channel suffers what is known as frequency 

selective fading which means that at any time instant, the amplitude and 

phase of the transfer function vary in a random fashion along the 

frequency axis. An approximately constant amplitude and linear phase 

can only be observed over a sufficiently small frequency interval. The 

fading is highly correlated in this case, whereas for sufficiently 
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separated frequencies, the fading is highly uncorrelated. This 

frequency selective behavior is usually described by the frequency 

correlation function, which is the cross correlation between two received 

carriers as a function of their frequency separation. 

While the frequency selective behavior could be described by the 

frequency correlation function, the delay power spectra gives a more 

physical characterization. In order to gain insight into the delay power 

spectra and its relation to the input and output processes, a brief 

description of the delay power spectra, following Bello and Nelin [6] will 

be in order. Their treatment is based on the following assumptions: 

1. The amounts of frequency selective fading is small. 

2. The scattering channel is wide sense stationary uncorrelated 

(WSSUS) with Gaussian statistics. 

3. Additive noise effects can be ignored in computing 

intermodulation distortion noise. 

The relation between the output and the input is given by 

W(t) = JZ{t - Ç) g(t, Ç) dÇ ;( 4.1 ) 

where g(t, Ç) = a time varyina impulse response, 

g(t, ç)dç = the gain associated with path delays in the 
interval (Ç, Ç + dç), and 

Z(t), W(t) = the complex envelopes of the input and output, 
respectively; the actual input and output are 
Rg{Z{t) exp (iZirf^t) and Rg{W(t) exp (iZirf^t} 

where f^ is the carrier frequency. 

The uncorrelated scattering assumption (2) implies 
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g*(t, ç )  get + T ,  N) = Q( t ,  ç )  ô ( t i  -  ç )  ( 4.2 ) 

where 5(n - Ç) is a unit impulse, and Q{ t , Ç) is the autocorrelation 

function of the gain fluctuations for path delays in the interval 

{Ç, Ç+dÇ). It is called the path gain autocorrelation function. Under 

the slow fading conditions, g(t, Ç) is practically constant over the 

duration of several pulses, and Equations 4.1 and 4.2 could be written as 

where g(ç) is the channel impulse response at the time the series of 

pulses are transmitted. Q(Ç) is proportional to the strength of the gain 

fluctuations for path delays in the interval (Ç, C + dC). The function 

Q(ç) is called the delay power density spectrum. The frequency 

correlation function q(0) and Q(ç) are Fourier transform pairs [24], i.e. 

Q(S) = J q(fi) exp (i2TiS2Ç)df2 ( 4.5 ) 

The shape of the function Q(ç) plays an important role in the study of 

intermodulation distortion and the bit error rate for digital 

troposcatter transmission. 

1. Bello's model for calculating the delay power spectra 

Bello [5] introduced a single integral troposcatter channel model 

to calculate the received power as a function of the path delay. As 

W(t) = J Z(t, Ç) g(C)dC ( 4.3 ) 

9*(5) g(n) = Q(S) 5(n - 5) ( 4.4 ) 

q(0) = J Q(S) exp (i2TiflÇ)dÇ ( 4.6 ) 
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mentioned in Chapter II, paths of constant time delay correspond to 

prolate spheroids with foci at the transmitter and receiver. Starting 

from Equation 2.1 in its differential form, which is repeated here for 

convenience, 

S.G 
dP_ = Q(S)dS ~ a(0)dV ( 4.7) 

R,V 

and using the Booker-Gordon blob scattering theory for which the three-

dimensional spectral density of the refractive index fluctuation of 

Equation 2.16, a(0) is written as 

0(0) = -L ( 4.8 ) 
he"' 

where m is the scattering angle exponent and h is the height of the 

scattering blob above the chord joining the transmitter and the receiver, 

Bello developed the following general integral for Q(Ç): 

q(î) ]— J - *o) dx ( 4.9 ) 

^(1^2) x(x +1^2 

Where w and 6 = the elevation angles of the horizon at the 
transmitter and the receiver, respectively, 

6 = -^ Ç - 1 = a normalized delay parameter, C is the velocity 
of light and D is the straight line distance 
between the transmitter and the receiver, and 

G..( ) and G { ) = the vertical antenna patterns of the transmitter 
and the receiver (refer to Figure 2.1). 
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It should be noted that in the integral of Equation 4.9, the 

antenna elevations are adjusted to have maximum gain at and (p^, which 

is not necessarily the general situation. Sometimes it is advantageous 

to clear the total half power beam width above the horizon, in which 

case Yg and in the integration limit are understood to be the horizon 

elevations and and (j)^ in the gain formulas are understood to be the 

elevations of the center beams. 

Bello used a value of m=5, which did not accurately predict the 

delay power spectra for short troposcatter paths. His model was later 

modified by Daniel and Reinman [20], and by Pusone and Hoag [21] who 

developed a delay power model based on the physics of the gases in the 

troposphere together with mean meteorological measurments. 

2. Delay power spectra based on an anisotropic model 

The model presented in the previous section for calculating the delay 

power spectra represents the power actually received at zero Doppler 

frequency in the Doppler delay plane of the scattering function 

representation of the forward scatter power. The difference between the 

zero Doppler power and the total power for a specific delay v/as shown 

by Birkemeier [4] to be very slight. Thus, the zero Doppler power as a 

function of the delay represents a very good estimate for the delay power 

spectrum. In addition, it is relatively easy to measure experimentally 

using a RAKE receiver. It was shown in the previous chapter that the 

received Doppler power for a delay tap j is given by Equation 3.18. 

The equation is repeated here for convenience as Equation 4.10. 
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Pj(fd) = Aj'Clj GXP (aij + (Aj: - lifjZ} . ( 4.10 ) 

For zero Doppler conditions. Equation 4.10 reduces to 

Pj(0) = ) 

The index j refers to the delay tap and represents the received zero 

Doppler power under isotropic conditions. 

Two important facts can be deduced from Equation 4.11. First, the 

zero Doppler power increases above that predicted under isotropic 

conditions as the square of the anisotropy coefficient. Second, the 

delay power spectra is seen to be a function of the variation of the 

anisotropy with the multipath delay; or in other words, with the 

anisotropy profile. 

Incorporating Equation 4.11 into Bello's integral for the delay 

power spectra given by Equation 4.9 and using the well-accepted -11/3 

spectrum of the refractive index fluctuations for average isotropic 

scattering conditions, the anisotropic version of the delay power 

spectrum becomes: 

Q(S) = flfs J" - ?o)Gr(-x- - *0),, ( 4.12 ) 

° X(X + 1) 

where the anisotropy coefficient A is written in terms of the delay. 

A computer program shown in Appendix C has been developed to 

numerically evaluate the integral in Equation 4.12 as a function of the 

delay. The program has as its inputs, the anisotropy profile, the path 
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length, and the antenna half power beam width. Gaussian antenna 

patterns are assumed. The program was verified by recalculating the 

delay power spectra of previously calculated examples from the 

literature [5]. This program is also used to process the ISU-UW link 

data. 

C. Anisotropy Profiles and Their Effect on the 
Delay Power Spectrum 

The general behavior of the anisotropy profiles is discussed in 

Chapter III. It is shown that the general trend of the profile of the 

average anisotropy coefficient A with height (or delay) is an increase 

starting with a value of nearly 1 near the grazing ray height and 

leveling off at higher elevations. Thus, a profile that is a smoothly 

varying function of height will be used in showing the order of 

magnitude of the corresponding variation in the delay power spectra. The 

profiles used are: 1) a linear increase of A with delay; 2) an 

exponential increase of A with delay; 3) a one path model to represent 

elevated layers; and 4) a two-path model. Before presenting these 

results, some measures of the shapes of the delay power spectra which 

are useful for comparison purposes and which are important parameters in 

the study of intermodulation distortion will be considered. It is 

convenient to normalize Q(S) so that 

J'Q(Ç)dÇ = 1 . ( 4.13 ) 

With this normalization, Q(Ç) has all the attributes of a probability 

density function [6]. 
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The mean path delay, and the multipath spread, A, are then 

defined as follows: 

Çq = J* SQ(S)dC ( 4.14 ) 

A = C J + Co)dC]l/2 . { 4.15 ) 

Sometimes a double-sided definition of A which is twice the value given 

by Equation 4.15 is used [25, 21]. In our study, the single-sided 

definition given by Equation 4.15 will be utilized. Two other moments 

are usually defined as: 

^3 = J + So)dS ( 4.16 ) 

and 

^4 = J + Co)dg . ( 4.17 ) 

The ratio gg = y^/A^ and are used in statistics as a measure 

of "asynmetry" and "flatness of peak" and are called the Skewness and 

the Excess, respectively. 

1. Linear increase of anisotropy with delay 

Starting with a simple case, the linear dependence of A on the 

delay takes the following form: 

A(Ç) = 1 + SÇ ( 4.18 ) 

where S is the slope and has dimension of sec~\ It should be noted 

that zero delay is chosen to correspond to the grazing ray at which 
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point the scattering is assumed to be isotropic (A = 1). Based on 

Birkemeier's data [4], S could range from 0 to 32 sec"^. 

2. Exponential increase of anisotropy with delay 

An anisotropy coefficient model that has the property of leveling 

off at higher delays, yet maintains the increasing behavior with delay, 

is the following exponential: 

A(5) = 1 + a(l - exp(-bS)) ( 4.19 ) 

where a and b are constants to be determined. In our case, the 

constant a is chosen to represent typical estimated values of anisotropy. 

Values of a of 7, 16, and 25 are used to represent typical, high, and 

very high values of the anisotropy. The determination of the constant b 

is based on a least square estimate for the experimentally obtained 

values of the anisotropy shown in Chapter III. Values of b of 1 and 0.5 

are used. 

3. One elevated layer 

This situation is of practical importance since very often signals 

received via tropospheric scattering are dominated by a constant 

component plus a randomly scattered component. This situation is an 

indication of a layer [26], that reflects signals instead of scattering 

them. In the case of a layer, the correlation distance of the refractive 

index in the horizontal direction is much larger than the vertical 

correlation distance; and it is nearly constant. Thus, a layer could be 

represented by an anisotropic scattering model having a constant value 
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of the am'sotropy coefficient A (A = The effect of a layer 

on the delay power spectra is represented by the following equation: 

A(C) = 1 + C[U(S "(Çq - A/2)) - U(C -(So + A/2))] ( 4.20 ) 

where C is a constant and U( ) is the unit step function. The layer is 

chosen to be at a height corresponding to the mean delay and of width 

equal to the multipath spread A. 

4. Two-layer model 

Situations in propagation exist in which the atmosphere has one 

elevated layer and another near the surface. It also represents two-

path propagation found in experimental results [27]. Thus, this 

situation can be considered from the anisotropic model point of view. 

The anisotropy coefficient is taken to vary with delay in the following 

form: 

C So - < S < So - $ 

A(e) = C go + $ < s < Co + -% ( 4.21 ) 

1 otherwise 

where the two layers are assumed to have equal anisotropy coefficient C. 

The delay power spectra of the previously mentioned anisotropic 

situations have been calculated and the results are shown in Figures 4.1, 

4.2, and 4.3. Table 4.1 summarizes the different characteristics of 

each spectrum. The isotropic spectrum is graphed on each figure to 
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Table 4.1. Summary of the delay power characteristics for the presented anisotropy profiles 

Anisotropy Form Mean delay Multipath Skew Excess 
variation in ys spread 

liS 

Isotropic 

Linear 

Exponential 

One layer 

A = 1 

A = 1+3Ç 
A = 1+85 
A = 1+12% 

A = l+7(l-exp(-Ç)) 
A = l+16(l-exp(-Ç)) 
A = l+25(l-exp(-0.5Ç)) 

1 otherwise 

0.317 

0.536 
0.631 
0.657 

0.516 
0.560 
0.595 

0.304 

0.247 

0.370 
0.391 
0.395 

0.327 
0.334 
0.358 

0.101 

1.756 

1.324 
1.168 
1.137 

1.293 
1.244 
1.203 

2.666 

7.836 

5.22 
4.616 
4.5 

5.37 
5.17 
4.9 

27.475 

Two layers A = < 

5,5„- f <Ç<Ç„ - I 

5.5„+ f <5<5o + r 

1 Otherwise 

0.277 0.140 1.417 8.836 
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serve as a reference. These spectra are calculated using the parameters 

of the ISU-UW troposcatter link. 

The main features of the spectra of the linear variation of 

anisotropy are shown in Figure 3.1, where it is seen that the multipath 

spread increases significantly with anisotropy. A slight (S=3) linear 

increase in anisotropy will bring about a 50% increase in multipath 

spread parameter, larger increases (s=8 to s=12) in anisotropy will bring 

up to a 60% increase in multipath spread. It should be noted that any 

further increase will not produce a significant change in spread. This 

is clear from Figure 4.1. The exponential variation of anisotropy 

produces an increase in multipath spread, which is less than the linear 

case. A 32% up to a 45% increase in multipath spread could result from 

changing a smaller (a=7, b=l) exponential increase in anisotropy to 

larger one (a=25, b=0.5). The situation is different for the single 

layer where the multipath spread decreases by 59%. The two-layer case 

results in 43% decrease in multipath spread. The result for the one-

layer case is intuitively plausible since received energy is no longer 

spread over the whole delay range, rather it is concentrated in one 

delay interval. 

The mean delay is also greatly affected by the anisotropy change. 

For the use of a linear increase of anisotropy, the mean delay 

increases from about 69% for a smaller increase in anisotropy to 99% and 

up to 107% for a larger increase. For the exponential anisotropy 

variation, the increase in the mean delay is smaller, ranging from about 

63% to 77% and up to 88% for smaller, medium and large increases of 
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anisotropy. The situation is different for the one-layer case where 

the mean delay is reduced very slightly by about 3%. For the two-layer 

case, a decrease by about 13% could occur. It is clear that the linear 

anisotropy increase has the most impact on the mean delay and on the 

multipath spread; however, the mean delay will actually depend on the 

height of the layer. It should be emphasized here that the numbers 

obtained are based on the profiles presented which could vary from one 

link to another. 

D. The Effect of Anisotropy on Intermodulation Distortion 
and Error Probability of Binary Communication Systems 

In communication systems, when the signal level is small due to 

severe fading, thermal noise becomes a limiting factor in the performance 

of the system. On the other hand, when the signal level is high, the 

nonlinear noise (or intermodulation noise) becomes the limiting factor. 

In the frequency modulation systems widely used in tropospheric scatter 

links, the main causes of the intermodulation are: 1) transmitter 

nonlinearity; 2) multipathing in the medium; and 3) receiver 

nonlinearity. A great deal of effort has been devoted to the study of 

this phenomena [7, 21, 27, 28]. This study is concerned with the impact of 

the transmission medium (the troposphere) on the received signals. As 

shown in the previous section, the atmospheric anisotropy has a 

significant effect on the multipath spread and consequently, will have 

the same effect on intermodulation distortion. 
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1. Intermodulation distortion 

The intermodulation theory developed by Bello et^/[6, 7] will be 

utilized here since it is more general and more complete. Although it 

is limited to cases exhibiting small frequency selective fading, this 

restriction does not limit its applicability to troposcatter systems 

since large amounts of frequency selectivity are unacceptable. 

Intermodulation is usually characterized by its power in a narrow band 

located at a certain baseband frequency f and is given by [6]: 

I(f, t) = A^P^^-(f)Y(t) ( 4.22. ) 

where x(t) is the modulating signal, x*{t) its time derivative, 

Pxx*(f) is the power spectrum of the product x(t)x*(t), and y(t) is 

called the normalized intermodulation distortion power. A quantity of 

importance in practical applications is the ratio of the intermodulation 

distortion power to signal power in a narrow band at a specified baseband 

frequency. This can be expressed as follows [7]: 

n(f, t) = liL-Ël = .V2 / (t) . ( 4.23 ) 
p,{f) p,(f) 

If x(t) is a Gaussian process with a flat power spectrum extending 

from aW to W and zero elsewhere, the value of n(f» t) at the top of the 

baseband (f=W) is given by [6]: 

n(W, t )  =  Y ( t )  ^ (—) { 4.24.. ) 
4 1-a 

where a is the rms value of x(t). 



www.manaraa.com

80 

The time dependent part of Y(t) in Equation 4.23 is described in 

terms of its probability density functions of all orders. Considering 

the case of no diversity, a first order probability density function 

for y» W(y) could be written as [6]: 

m(y) = - J - r "  f y J  (  4.25) 
/f(R) (1 + + 4^) 

where 

f(R) = R^ +4 + 1(4 - 1) ( 4.26 ) 

and A, and are defined by Equations 4.15, 4.16, and 4.17. 

Equation 4.25 is a function of the delay power spectrum parameters 

which are highly dependent on the atmospheric anisotropy profiles. No 

exact closed form for W(y) has been found, so a numerical integration is 

usually used for these calculations. Practical values of y are large, 

i.e. > 10, and for a 10 dB signal-to-noise ratio, the value of y is 10^. 

Thus, an approximate formula for w(y) can be used. For the nondiversity 

case, the following formula from reference 7 can be used. 

W(Y) = -L Y >10 ( 4.27) 
tiy 

W(y) = Mi Y« 1 (4.28) 

A computer program to numerically evaluate W{Y) in Equation 4.25 

for the ISU-UW link has been written for the delay power spectra 

presented in Table 4.1. The probability density functions and the 
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cumulative distribution functions are shown in Figures 4.4 and 4.5 for 

the isotropic linear and exponential anisotropy profiles. It is clear 

from the figures that the probability density function of the normalized 

intermodulation is practically unaffected by the different anisotropy 

profiles. The general shape of W(Y) is characterized by a steep 

increase for Y < 1 while for y > 1, it decreases more rapidly. 

2. Effect of anisotropy on the error rate of a binary communication 
system 

In a binary communication system, one of two signals, s^{t) or s^(t), 

is received in the time interval (o £ t £T). The received signal is 

corrupted by both the medium through which it propagates and the 

unavoidable noise at the receiver. The medium manifests itself by 

producing intermodulation, while the noise will result in an uncertainty 

of the received signal. Both will result in errors in deciding whether 

the received signal is s^ft) or s-|(t). The performance of digital 

communication systems is usually expressed by curves representing the 

probability of error versus a characteristic parameter of the receiver; 

for example, signal-to-noise ratio. The noise is usually assumed to be 

Gaussian with zero mean. The error performance due to the receiver noise 

can be found in many texts. This study will use the development in 

reference [29] where the error probability is given by: 

1/2 
p. = J -Î- exp (-z2/2)dz = 1 Erfc ( 4.29 ) 
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where E is the average energy and is given by 

E = [sQ^ft) + s^^(t)]dt . 

p is the correlation coefficient between s^ft) and s-j{t); 

1 T 
p = Y J ^^{t) s-j(t)dt, and NQ/2 is the two-sided noise spectral density. 

0 

E /NQ is the signal-to-noise ratio. 

The error probability decreases as (1-P)E/NQ increases and for 

fixed E/Ng, the optimum system is that for which p = -1. Figure 4.6 

shows the error performance of three binary communication systems of 

practical use. The curve corresponding to p = -1 is for coherent phase 

shift keying (CPSK), which is the optimum binary system. The curve 

corresponding to p = 0 is for coherent frequency shift keying (CFSK) and 

ON-OFF carrier keying. For a given error probability, a 3-db increase 

in signal-to-noise ratio results when using CPSK instead of CFSK or 

ON-OFF carrier. 

The error resulting from intermodulation distortion can be estimated 

for the binary communication systems by using Equation 4.29 and the 

proper definition of the signal-to-noise ratio, E/N^. Averaging this 

error probability over the probability density function of the 

intermodulation distortion given by Equation 4.25, results in an 

expression for the error performance of PSK systems. 

Pg(s)  =  }Erfc(s ) l /2  (4 .30)  
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systems [29] 
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and for FSK 

Pg(s) = ^ Erfc ( 4.31 ) 

where s = E/N^, the signal-to-noise ratio. 

For the intermodulation distrotion, the signal-to-noise ratio, s, 

is equal to l/n(f) in Equation 4.23 where n(f) denotes the ratio of the 

intermodulation distortion power to signal power in a narrow frequency 

band located at some specified baseband frequency. The average error 

probability is given by: 

" 1 _ 
Pe = J* Y Erfc /TTZn W(Y)dy . ( 4.32 ) 

0 

As shown in the previous section, W(Y) is essentially independent of 

the anisotropy profiles, thus, the only parameter that affects the 

error rate is the multipath spread parameter implied through n. A 

normalized parameter is often used instead of n and is given by [7]: 

n = gy ( 4.33 ) 

4 V) 
where g = A . 

p^(f) 

Thus, on a given troposcatter link, anisotropy will result in a change 

in the multipath spread parameter, A. Equation 4.32 is numerically 

evaluated by means of computer program written for this purpose for 

the anisotropy conditions shown in Table 4.1. The approximate form of 

Equation 4.27 is used in these calculations since the practical range 

of A is >10. Figure 4.7 shows the effect of the anisotropy change on 
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the irreducible error probability for isotropic, linear, and exponential 

anisotropy profiles. It is found that anisotropy will tend to increase 

the error probability by an order of magnitude or more. For a given 

error probability, about a 6dB increase in intermodulation distortion 

due to a linear increase (s=12) in anisotropy will result. The error 

probability of intermodulation distortion is found by estimating the 

multipath spread parameter A for the isotropic case from Figure 4.7, 

then the anisotropy profile is determined, the change in g value is 

found, and the new value of the error probability is found. The total 

error probability of a binary communication system is approximated by 

the sum of the probabilities due to the Gaussian noise and the 

intermodulation distortion. 

E. Measurements of the Multipath Characteristics 

In addition to its sounding capability, the RAKE system is also 

useful in measuring the multipath characteristics since delay tap spectra 

can be processed to find the total power for each delay. It was 

mentioned earlier that there is little difference between the zero 

Doppler power and the total power; so the zero Doppler power is a very 

good estimate of the total power for a given delay. The delay power 

spectra taken from the ISU-UW link for April 2, November 20, 1981, 

March 11, April 6, 1982 are shown in Figures 4.8 through 4.11, 

respectively. These are presented to demonstrate the nature of 

variations of the multipath characteristics that can exist on a 

troposcatter link. The multipath characteristics for the above-mentioned 

dates are theoretically calculated based on isotropic scattering 
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conditions according to the -11/3 spectrum using Equation 4.9. 

Table 4.2 summarizes the mean delay and multipath spread parameters for 

the measured data and calculations based on isotropic scattering 

conditions for the above-mentioned dates. 

Looking at Table 4.2, it is apparent that the measured mean delay 

of April 2, November, 20, 1981 and April 6, 1982 are larger than those 

theoretically calculated based on isotropic conditions; while for that 

of March 11, 1982, the measured mean delay is less than the calculated 

one. The multipath spread parameter shows measured values that are 

less than the theoretically calculated ones for the day of March 11 and 

April 6, 1982. The measured and calculated values are in close agreement 

for the April 2, 1981 data. The day of November 20, 1981 shows an 

increased measured value relative to the theoretically calculated one. 

At this point, it is useful to mention the expected variations 

between the measured and calculated values of the multipath parameters. 

The anisotropic model was presented in Chapter III, together with the 

typical behavior of the anisotropy coefficient, which tends to increase 

with delay, then levels off. According to the data of the variation 

of the anisotropy coefficient with height (or tap number) shown in 

Figures 3.10 through 3.13 for the previously mentioned dates, we expect 

that the measured value should be larger than the calculated values 

based on isotropic scattering. It was mentioned earlier that the 

increase in the anisotropy coefficient with delay tends to increase both 

the multipath spread and the mean delay parameters. 
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Table 4.2. Comparison between the measured and calculated mean delay and multipath spread 
parameter 

April 2, 1981 Nov. 20, 1981 March 11, 1982 April 6, 1982 

Go 
ysec 

A 
ysec 

Go 
ysec 

A 
ysec 

Go 
Msec 

A 
ysec 

Go A 

Measured 0.69 0.33 0.76 0.51. 0.83 0.38 1.11 0.38 

Calculated, 
based on the 
-11/3 spectrum 

0.461 0.349 0.461 0.349 1.02 0.581 0.831 0.521 

Linear 
anisotropy 
model 

a _a 0.611 0.438 _a _a _a .a 

^The anisotropic model is not used for this situation. 
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The data reported in Table 4.2 show only one day, November 20, 1981, 

that has the above-mentioned characteristics of increased measured value 

relative to the theoretically calculated ones. The measured values 

exhibit increases of 40% and 32% (the percentage is with respect to the 

measured value) in the mean delay and multipath spread, respectively. 

The anisotropic model is introduced in the calculations to account for 

this increase. A linear least square fit to the data of November 20, 

1981, is done and the resulting anisotropy profile is inserted 

into the calculations of the delay power spectra. The result 

is shown in Table 4.2 for that day. The difference between the measured 

and calculated value is now smaller. It is 19% and 14% for the mean 

delay and the spread parameter, respectively, which is an improvement 

in the proper direction. This situation indicates that the 

anisotropic model could indeed account for this type of difference 

between the measured and calculated delay power spectra characteristics. 

The anomalies reported in the remaining dates of April 2, 1981 

and March 11, April 6, 1982 could be attributed to a number of sources. 

The first source is that the values of the anisotropy coefficient 

shown in Figures 3.10 through 3.13 are indeed considered to be 

instantaneous values where the data from one tap are taken over a short 

period (about one minute) and this, which could result in values of the 

anisotropy coefficient having the characteristic variation of the 

anisotropy with height (or delay), does not in fact give an absolute 

value of the anisotropy coefficient. In order to get good estimates for 

the anisotropy coefficient, an average over longer time periods is 
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required, which means more data is still required to give a typical 

anisotropy variation with height for the specific link. The second 

source that could account for the anomalies is the high sensitivity 

of the delay power spectra calculations on the elevation angles of both 

the transmitter and receiver. Also, the delay power spectra are very 

sensitive to variations in the half power beam width. A half power 

beam width of 2.6° was used in these calculations. However, there is 

some evidence to indicate that the half power beam width of the 

transmitting antenna is somewhat less than that. Accurate measurements 

of the true elevation angles of the antennas used in the ISU-UW 

troposcatter link have not been accomplished. Another source of error 

is the use of a forecasted wind instead of the actual cross path wind 

which needs to be used in extracting the anisotropy coefficient. 

In spite of the fact that the experimental data are somewhat 

limited, this study shows that the measurements of the anisotropy of 

the atmosphere can be made. The results of trying to relate the 

experimental measurements of the anisotropy profiles to the multipath 

parameters indicate that more information on the physical parameters of 

the troposcatter link are needed. The results are encouraging, however. 
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V. CONCLUSION 

This dissertation has dealt with atmospheric anisotropy and its 

effect on the delay power spectra of the troposcatter communication links. 

Not enough information about the atmospheric anisotropy exists in the 

literature, and even direct measurements for the atmospheric anisotropy 

have not been attempted. This is due to difficulties in measuring 

small scale three-dimensional refractivity fluctuations simultaneously in 

time and space. A simplified model has been presented to estimate the 

atmospheric anisotropy coefficient indirectly by processing the Doppler 

spectrum for each tap delay. This has been shown to be a good 

approximation to the anisotropic scattering model based on turbulence 

induced fluctuations in the refractive index of the atmosphere. The 

model offers definite advantages for extracting the anisotropy coefficient. 

One advantage is that the anisotropy coefficient can be evaluated using 

data from a single time delay shell. The anisotropy coefficient 

determined by this process is an average taken over the scattering volume 

of the time delay shell. The second advantage lies in the relative ease 

of implementing the inversion process. The Doppler spectrum of the 

received signal is fit to the Gaussian shaped scattering model. This 

process can be accomplished by linear regression done on a digital 

computer. 

Having determined the anisotropy coefficient for each time delay 

shell, the impact of the anisotropy on the troposcatter channel as a 

communication link is studied. Bello's model for the troposcatter 

channel is modified to include the effect of the anisotropy on the delay 
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power spectra of the troposcatter signals. It has been found that the 

anisotropy will result in increased multipath spread and mean delay 

parameters relative to those resulting from isotropic scattering 

Different theoretical anisotropy profiles based on the general 

experimentally observed changes in the anisotropy coefficient with delay 

are used in this study. The different characteristics of the delay 

power spectra are calculated for each anisotropy profile. The effect of 

anisotropy on the probability density function of the intermodulation 

distortion has been shown to be very slight. However, its effect on 

binary communication systems is to increase the bit error rate by an 

order of magnitude or more. 

This study could be extended for future work in two areas. The 

first area is that of improving the characterization of the atmospheric 

anisotropy by extending the anisotropic model to be applicable to wider 

varieties of atmospheric conditions. More carefully planned measurements 

are still needed in this field. The model presented for determining the 

anisotropy depends on the accuracy of the wind measurements at the common 

volume. In our calculations, a forecasted wind aloft near midpath is 

used. These are estimated values and are of questionable accuracy. Also, 

the weather service estimates are given at a few discrete heights, so the 

coverage is incomplete. In fact, this problem arises whenever one 

attempts to use Doppler frequency information to determine the anisotropy 

coefficient and is independent of the scattering model employed in the 

process. 
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The second possible area that needs more investigation's the 

accuracy of Belle's model to accurately predict the delay power spectra 

of short troposcatter links and their frequency correlation functions. 

Daniel and Reinman [20] presented a modification to Bello's model by 

correlating the exponent of the scattering angle with the path length. 

This, of course, is not based on a physical model of scattering. Pusone 

and Hoag [21] also introduced a troposcatter channel model which is 

based on meteorological measurments. Their model predicts results closer 

to the measured values of the frequency correlation function. We 

believe that by considering the scattering process to be described by an 

anisotropic scattering model and its characteristic increase with height, 

the reduction in the correlation bandwidth which has been reported 

experimentally can be accounted for. 
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VIII. APPENDIX A: PARAMETERS OF THE ISU-UW 
TROPOSCATTER LINK 

Table 8.1 summarizes the important characteristics of the ISU-UW 

tropospheric scatter radio link. 

Table 8.1. Summary of the characteristics of the ISU-UW forward 
scatter radar 

Parameter Value or location 

Transmitter location ISU Pick-Observatory, Moingona, lA 

Receiver location UW Agricultural Farm, Arlington, WI 

Transmitter power 10 Kw (cw) 

Carrier frequency 940 MHz 

Bandwidth 10 MHz 

Transmitting antenna 8.53 m paraboloid 

Receiving antenna 8.53 m paraboloid 

Antenna half-power 
beamwi dth 2.6° 

Receiver noise figure 6dB 

Distance 406 Km 

Basic path loss 156 dS 

Minimum propagation time 
from trans, to rec. 1.354 ms 

Modulation pseudorandom binary code 2^®/bits per 
word at a bit rate of 10^ bits/sec 
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Trans. 
xc 

Figure 8.1. Geometry for height delay relations at midpath 

The height-delay relations can be deduced from the geometry of 

Figure 8.1. The time delay is usually taken relative to the grazing 

ray. Let L denote the path length and h the height at midpath. L and 

h are the corresponding values at the horizon (grazing ray). The 

following relations can be written: 

L - L = cAt , L = L + cAt 8.1 
G G 
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8.2 

0 = arc tan (d/R^) 8.3 

Lp = 2R_ tan 0 b e 8.4 

Xg = Rg sin 0. 8.5 

From Equations 8.1 and 8.2, one can write 

Substituting for Lg and in terms of 0 and R^, and putting c = 0.3 Km/us 

results in 

In Equation 8.7, when At is in microseconds and R^ is in Km, h will 

be in Km. Equation 8.7 is used to calculate the midpath height 

corresponding to the different delays. Figure 8.2 shows a cross section 

at midpath depicting the different delay shells and their relative height 

for 0.2 ys resolution. Tables 8.2 and 8.3 list the shell height for 

0.1 and 0.2 microseconds delays. The mid-shell height is usually used 

in our calculations. Tables 8.2 and 8.3 list distances from the chord 

and from the surface, as well as the shell thickness. 

The Doppler frequency, given by Equation 2.27, can be written for 

the ISU-UW link as 

? ? 
h = [(Rg tan 0 + 0.15 At) - (RgSin 0) ] 8.7 

fy = - 0.031 vy 8.8 



www.manaraa.com

107 

z 

h -km 

TAP NO 
39000 ft. 

=34000 ft. 

30000 ft., 

24000 ft. 

18000 ft. 

12000 ft. 

5 -4 _3 _2 -1 0 1 2 3 4 5 6 7 7 
y-km 

Figure 8.2. Contours of 0.2 ys increments of constant time 
delay in the midpath plane 



www.manaraa.com

108 

Table 8.2. Delay heights (in Km) for 0.1 ys resolution 

Tap Time Mid height Mid height Shell 
# delay ZMC ZKS thickness 

1 0.1000 5.1450 2.7192 0.5929 

2 0.2000 5.7082 3.2824 0.5334 

3 0.3000 6.2198 3.7940 0.4899 

4 0.4000 6.6924 4.2666 0.4553 

5 0.5000 7.1336 4.7078 0.4271 

6 0.6000 7.5488 5.1230 0.4034 

7 0.7000 7.9423 5.5165 0.3836 

8 0.8000 8.3174 5.8916 0.3666 

9 0.9000 8.6763 6.2505 0.3512 

10 1.0000 9.0207 6.5950 0.3378 

11 1.1000 9.3526 6.9268 0.3260 

12 1.2000 9.6731 7.2473 0.3150 

13 1.3000 9.9833 7.5575 0.3054 

14 1.4000 10.2842 7.8584 0.2965 

15 1.5000 10.5766 8.1508 0.2883 

16 1.6000 10.8611 8.4353 0.2807 

17 1.7000 11.1383 8.7125 0.2737 

18 1.8000 11.4088 8.9830 " 0.2672 

19 1.9000 11.6730 9.2473 0.2614 

20 2.0000 11.9315 9.5057 0.2555 

21 2.1000 12.1844 9.7587 0.2504 

22 2.2000 12.4323 10.0066 0.2454 
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Table 8.2. Continued 

Tap Time Mid height Mid height Shell 
# delay ZMC ZMS thickness 

23 2.3000 12.6753 10.2495 0.2405 

24 2.4000 12.9137 , 10.4879 0.2362 

25 2.5000 13.1479 10.7221 0.2322 

26 2.6000 13.3780 10.9522 0.2280 

27 2.7000 13.6042 11.1784 0.2243 

28 2.8000 13.8268 11.4010 0.2209 

29 2.9000 14.0459 11.6201 0.2173 

30 3.0000 14.2615 11.8357 0.2139 

31 3.1000 14.4739 12.0481 0.2109 

32 3.2000 14.6833 12.2576 0.2079 

33 3.3000 14.8898 12.4640 0.2050 

34 3.4000 15.0934 12.6677 0.2023 

35 3.5000 15.2944 12.8686 0.1996 

36 3.6000 15.4928 13.0670 0.1972 

37 3.7000 15.6886 13.2628 0.1946 

38 3.8000 15.8821 13.4563 0.1923 

39 3.9000 16.0733 13.6475 0.1900 

40 4.0000 16.2621 13.8364 0.1877 

41 4.1000 16.4489 14.0231 0.1857 

42 4.2000 16.6335 14.2078 0.1837 

43 4.3000 16.8163 14.3905 0.1818 

44 4.4000 16.9970 14.5712 0.1797 
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Table 8.2. Continued 

no 

Tap Time Mid height Mid height Shell 
# delay ZMC ZMS thickness 

45 4.5000 17.1758 14.7500 0.1779 

46 4.6000 17.3528 14.9270 0.1761 

47 4.7000 17.5280 15.1022 0.1743 

48 4.8000 17.7015 15.2757 0.1727 

49 4.9000 17.8733 15.4475 0.1710 

50 5,0000 18.0435 15.6177 0.1694 

51 5.1000 18.2121 15.7864 0.1678 

52 5.2000 18.3792 15.9534 0.1663 

53 5.3000 18.5448 16.1190 0.1649 

54 5.4000 18.7090 16.2832 0.1634 

55 5.5000 18.8717 16.4459 0.1621 

56 5.6000 19.0330 16.6073 0.1606 

57 5.7000 19.1931 16.7673 0.1596 

58 5.8000 19.3519 16.9261 0.1580 

59 5.9000 19.5092 17.0835 0.1568 
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Table 8.3. Delay heights (in Km) for 0.2 ys resolution 

Tap Time Mid height Mid height Shell 
delay ZMC ZMS thickness 

1 0.2000 5.4117 2.9859 1.1263 

2 0.4000 6.4475 4.0217 0.9451 

3 0.6000 7.3353 4.9095 0.8305 

4 0.8000 8.1256 5.6998 0.7502 

5 1.0000 8.8452 6.4194 0.6889 

6 1.2000 9.5101 7.0843 0.6410 

7 1.4000 10.1315 7.7057 0.6018 

8 1.6000 10.7169 8.2911 0.5690 

9 1.8000 11.2719 8.8461 0.5410 

10 2.0000 11.8008 9.3750 0.5169 

11 2.2000 12.3071 9.8814 0.4958 

12 2.4000 12.7934 10.3676 0.4768 

13 2.6000 13.2620 10.8362 0.4604 

14 2.8000 13.7147 11.2889 0.4450 

15 3.0000 14.1528 11.7271 0.4313 

16 3.2000 14.5779 12.1521 0.4188 

17 3.4000 14.9909 12.5651 0.4073 

18 3.6000 15.3930 12.9672 0.3968 

19 3.8000 15.7848 13.3590 0.3869 

20 4.0000 16.1671 13.7413 0.3778 

21 4.2000 16.5407 14.1149 0.3694 

22 4.4000 16.9061 14.4803 0.3615 
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Table 8.3. Continued 

Tap Time Mid height Mid height Shell 
# delay ZMC ZMS thickness 

23 4.6000 17.2639 14.8381 0.3540 

24 4.8000 17.6143 15.1886 0.3470 

25 5.0000 17.9580 15.5322 0.3404 

26 5.2000 18.2954 15.8696 0.3344 

27 5.4000 18.6267 16.2009 0.3283 

28 5.6000 18.9522 16.5264 0.3227 

29 5.8000 19.2722 16.8464 0.3173 

30 6.000 19.5871 17.1613 0.3124 

31 6.2000 19.8970 17.4712 0.3074 

32 6.4000 20.2021 17.7764 0.3029 

33 6.6000 20.5029 18.0771 0.2985 

34 6.8000 20.7993 18.3735 0.2943 

35 7,0000 21.0916 18.6658 0.2902 

36 7.2000 21.3799 18.9541 0.2864 

37 7.4000 21.6644 19.2386 0.2826 

38 7.6000 21.9452 19.5195 0.2791 

39 7.8000 22.2227 19.7969 0.2758 

40 8.0000 22.4967 20.0710 0.2724 

41 8.2000 22.7675 20.3417 0.2691 

42 8.4000 23.0351 20.6093 0.2661 

43 8.6000 23.2996 20.8738 0.2630 

44 8.8000 23.5612 21.1355 0.2602 
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Table 8.3. Continued 

Tap Time Mid height Mid height Shell 
# delay ZMC ZMS thickness 

45 9.0000 23.8201 21.3943 0.2574 

46 9.2000 24.0761 21.6503 0.2547 

47 9.4000 24.3294 21.9037 0.2521 

48 9.6000 24.5803 22.1545 0.2496 

49 9.8000 24.8286 22.4028 0.2470 

50 10.0000 25.0744 22.6486 0.2447 

51 10.2000 25.3180 22.8922 0.2424 

52 10.4000 25.5593 23.1335 0.2402 

53 10.6000 25.7983 23.3725 0.2379 

54 10.8000 26.0352 23.6094 0.2358 

55 11.0000 26.2700 23.8442 0.2337 

56 11.2000 26.5027 24.0769 0.2317 

57 11.4000 26.7334 24.3076 0.2298 

58 11.6000 26.9622 24.5364 0.2278 

59 11.8000 27.1891 24.7633 0.2259 
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IX. APPENDIX B: WATFIV COMPUTER PROGRAM FOR CALCULATING 
THE DISTRIBUTION OF THE DIFFERENTIAL 
ISOTROPIC SCATTERED POWER VS CROSSPATH 
DISTANCE 
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c *#***********»*******#******************»************#*#******» * 
c » MAIN PROGRAM tfl USED FOR UNEQUAL « 
C * ANTENNAS ELEVATION « 
C » PURPOSE * 
C » THIS. PROGRAM IS USED TO CALCULATE THE DISTRIBUTION OF * 
C » THE DIFFERENTIAL ISOTROPIC SCATTERED POWER AS A FUNCTION OF « 
C » THE CROSSPATH DISTANCE FOR EACH TIME DELAY SHELL IN A « 
C # TROPOSPHERIC SCATTER LINK UTILIZING RAKE RECEIVER . THE # 
C » PROGRAM APPROXIMATES THE TIME DELAY SHELLS AS A CONFOCAL * 
C » CYLINDERS NEAR MIDPATH . ONLY THE POWER CONFINED TO THE 3-DB $ 
C * BOUNDARIES OF BOTH THE TRANSMITTING AND RECEIVING ANTENNAS « 
C » IS CALCULATED. « 
C « A CROSS SECTION OF THE 3-DB ANTENNAS PATTERNS IN THE # 
C « Y-Z PLANE AT THE MIDPATH CAN BE APPROXIMATED BY A CIRCLE, « 
C » WHICH INTERSECTS WITH EACH TIME DELAY SHELL • THE 3-DB * 
C * BOUNDARIES ALONG-THE-PATH AND CROSSPATH ARE FOUND FOR EACH * 
C * TIME DELAY SHELL . AT ANY CROSSPATH DISTANCE ,A LINEAR » 
C * RELATIONSHIP BETWEEN THE ALONG-THE-PATH AND CROSSPATH * 
C * BOUNDARIES IS ASSUMED . THE SCATTERED POWER AT ANY » 
C * CROSSPATH DISTANCE Y IS CALCULATED USING EQUATION 3.22 WITH » 
C » ASSUMPTIONS GIVEN IN SECTION III.C.l . THE CLACULATED POWER * 
C * IS THEN NORMALIZED TO THE POWER SCATTERED FROM THE GREAT « 
C * CIRCLE PLANE • A GAUSSIAN LEAST SQUARE FIT IS ALSO CALCULATED « 
C » . IT SHOULD BE NOTICED THAT THE ELEVATIONS ARE ALWAYS REFERED # 
C * TO THE CHORD JOINING THE TRANSMITTER AND THE RECEIVER . THE * 
C » ORIGIN OF THE COORDINATE SYSTEM IS CHOSEN TO BE AT THE » 
C * RECEIVER LOCATION FOR CONVENIANCE . THE PROGRAM ASSUMES THAT » 
C » THE DIFFERENCE IN THE ANTENNAS ELEVATION NO MORR THAN .5 DEG. * 
C » DESCRIPTION OF PARAMETERS * 
C « D : PATH LENGTH * 
C * THPW : HALF POWER BEAMWIDTH OF THE ANTENNAS . * 
C * IDENTICAL TRANSMITTING AND RECEIVING ANTENNAS » 
C * ARE ASSUMED • « 
C » PHT.PHR ; ELEVATION OF THE TRANSMITTING AND RECEIVING * 
C « ANTENNAS RESPECTIVELY * 
C * TAU(N) : DIFFERENTIAL DELAY » 
C » ZMC(N),ZMS(N) : MID SHELL HEIGHTS FROM THE CHORD AND THE # 
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* 
« DZ(N) : 
» YP(J) : 
« po(J)  :  
* 
» X1P(J)»X2P(J) : 
* 
* ziP(J)*Z2P(J) : 
* 
* 
«SUBROUTINE CALL 
* SUBROUTINE CALL 
« 

SURFACE RESPECTIVELY 
SHELL THICKNESS 
CROSSPATH DISTANCE 
DIFFERENTIAL ISOTROPIC SCATTERED POWER 
CORRESPONDING TO CROSSPATH DISTANCE YP(J) 
THE X-BOUNDARIES OF TIME DELAY SHELL 
CORRESPONDING TO CROSSPATH DISTANCE YP(J) 
THE Z-BOUNDARIES OF TIME DELAY SHELL 
CORRESPONDING TO CROSSPATH DISTANCE YP(J) 

» 
* 
» 
* 
« 
» 
* 
* 
» 
* 
* 
# 
» 

UNEQU 
POWER 

REAL ZC(130),ZS(130),TAU<130),DZ(130),P0(30),ZMC(130),X1(130), 
+X2(130),YP(30),ZP(30),Z1P(30),Z2P(30),X1P(30),X2P(30),PL(30)• 
+YP2(30) 
PI=3.14159265 
D=406.0 
THPW=2.6*PI/180 
HPW=THPW/2 
PHR=D/17000.+1.0*PI/180. 
PHT=D/17000.+2.5»PI/180. 
TN=TAN(D/17000.) 
SN=SIN(D/17000.) 
RG=8500.*TN 
XC=8500.*SN 
ZGC=XC»TN 
ZSC=8500.-XC/TN 
DELTA=0.2 
TAU(1) = 0.0 
ZCM )=ZGC 
ZS(1)=ZC(1)-ZSC 
PRINT 1 
FORMAT**1*,'TAP #*,2X,*TIME DELAY *•2X»«M ID HEIGHT ZMC*»2X» 

••MID HEIGHT ZMS••2X»•SHELLLTHICKNESS*./) 
DO 10 1=2,101 



www.manaraa.com

117 

•a-• 
00 
11. 

M 
* 
* 
U 
X 
I 

CVI 
* 
* 

U 
lU 
O 

3 
< 
T-
* 
10 

10 
o 
* 

u 
N 
+ 

I 
m 
O < 
t-
H 
f4 

3 
< 

iH 

• U 
+ U N 
O (A I 
û: N »» 
— • M 
W 
I- «-« u 
Û: V N 
ou H 
U) N  ̂
Il II «4 M M I 

u (A N 
N N o 

«4 U 
I (O 

M N 
w I 
O 
N 
«• ( 

II — 
-M U 
t Z 
M N 
w II u (n 
z z 
N N 

I 
M M 
W X 
N (M 
0 .M 

•> » 
(0 4-
Z • 
IM N 
• IL 
M, W 
w m 
1 • 
M X 
V o 
o •. 
z c 
N • 
• H-

IL 
M • 

X 
3 « 
< • 

m 

z o 
u M 
I K 
H U 

M u 
(M Z ce 
X M M 
• • O 
M U 
X z X 
• D 
m J m 
isj o z 
X > »-

CM 
N 
X 
• 
» 
N 

M 
N 

(M 
N 

NI 
U 
s 

X 
Q. 

o: 
X 
CL 

a 
•I 

M û 
I m 

(M >-
K 

h- < 
Z Z 
W A 
oc o 
a. IL 

3 
O 

UJ 01 => z 
z 3 
«M 

Z d o < 
u u 

z z o M 
z (A 
O lU u M 

a: 
tu < 
X O +- z 

3 
IL O 
O m 
U) u 
W X 
M K LO 
CK N 
< UJ X 
O o: • 
z < CM 
3 N 
O 10 X 
(D N • 

X -» 
u N 
X A • 
*- (M M 

N N 
UJ X • 
A - CM 
< • N 

^ z W 
N O N  

M M 
m H- * 
N u 10 
• lU 

CM Q: I-
N M z 
" O M 
w tr 
N N Q. 

Il 
C 
N 

X 
m 

m u. 

Il 
M 
N 

X 
M 

<» 
• 
eo 
u. 

Il 
CM 
N fl

oe 
X 
a 
I. 
H 
X 
A 
I 

• Q. 
• CD 
X IL n » 
» Il 
• M 

CO N 
11. X 

M '# 
# A 

N • 
• -» m • 
X CD 
CM II 

(A 
\ 

K 
X 
a 

^ Il • (M 
W M 
t- X 
< • 

(A 
* A 
m X 
K A 
X CM 
a z N 
«» < »* 
z H w 
M \ N 
tn < t 
« Y FL-
o N N 
IL II — 
< < Il 
U V < 
N X a 

LU 
*-
z < 

z 
tu ffl 
X o 
H- I 

10 

•» LU 
< X 
o: »-
+ 
< IL 

_J H-
u 
tu 
CA 
K 
lu U 

Z 
N 

• 
O 

< 
cr 
I 
< 
u 
N 

O U 
A • 

IL — v u 
z 

o N 
CM — 

Z _l 
M 

tu 
N X 

(A 
O 

tu 

. M 
tu H 
A < X 

< 
u 
N 
* 
CM 

g; 

N 
* 

V «4 

S? 
< *• 
U N '•' »» 
+ U 

«-< % 
N (A 
O Z 
Z ce < LU 

o IL "4 < 
û •-• > Q. 

^ N u 
- * Z 
u " N 
Z S N K 
* U 

Z >-N «i» 
w Z 

V #- «M 
z Q: <A 
N O S  

CA < 
Il II II 
M »- M 

X 
N > A 

< < 

# • 
O  ̂
CM  ̂  ̂

»H CM 
X X X  a II II 
Il ^ ̂  
•H  ̂  ̂
X » «• 
a >4 CM 
o X X 

X a 
N 

X  x a  
a û. û 
g § 2  
m, -11 
I I -> 
N -Ï «-
W «0 s 
w w M 
z «n X M o a 
(A u — 
* * * 

 ̂  ̂̂  0% 
(M V 

ai W W W 
.4 U U W 
Il Z Z X 
"> N N II 

II II 
O  ̂
lO -5 -ï 
O a Q> «4 
o > N X 

X 

*»• < 

s: ^ -> 
W A 

S^x 
M 11 

CM 

<  ̂
U 

?s + 
"5 

-> 
a w 
CM a X N 
Il II 

-? -» -9 -5 

a a 
CM «4 
X X 

a a 
CM «4 
X N 

o 
CM — u V LO u u 



www.manaraa.com

Z2P(J)=ZP(J)-DZ(K)/2 
CONTINUE 
CALL P0WER(0.THPW.PHR.PHT.XlPtX2P»ZlP.Z2P»YP»P0) 
PRINT 3#K.ZMCCK) tZlT.VlTtPOd ) 
FORMAT*'1*,2X,I3,2X,4(F11.7,3X;) 
NORMALIZING THE DIFFERENTIAL POWER TO THE GREAT CIRCLE POWER 
YS=POU ) 
DO 40 Jl=l,21 
POCJ)=PO<J)/VS 
PRINT 4,YP(Jj,P0(J) 
F0RMAT(*0*»2X*2(F1I.7»2X)) 
IF(J.NE.21)THEN 
PLC J) IS THE LOGARITHM OF THE DIFFERNTIAL SCATTERED POWER . 
YP2(J) IS THE CROSSPATH DISTANCE SQUARED BOTH PARAMETERS ARE 
USE IN THE LEAST SQUAR GAUSSIAN FIT 
PL(J)=ALOG(PO(J)) 
YP2(J)=YP(JÏ«YP(4) 
ENDIF 
CONTINUE 
GAUSSIAN LEAST SQUARE FIT TO THE DIFFERENTIAL SCATTERED POWER 
SPL=0.0 
SYP2=0.0 
SPLV=0.0 
SYP22=0.0 
DO 55 1=1,20 
SPLsSPL+PLCn 
SYP2=SYP2+YP2<I) 
S PLY=SPLY +PL(I)*YP2(I ) 
SYP22=SYP22+YP2(I)»YP2(I) 
CONTINUE 
AI IS THE REQUIRED PARAMETER TO BE USED EQUATION 3.21 
AI=(SPLY-SPL*SYP2/20.0)/(SYP22-SYP2»SYP2/2Ô.o; 
B0=(SPL/20.0)-<AI*SYP2/20.0) 
BO=EXP(BO) 
PRINT,AI,BO 
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ENDIF 
CONTINUE 
STOP 
END 

* THE SUBROUTINE UNEO CALCULATES THE GREAT CIRCLE X BOUNDARIES % 
* FOR EACH TIME DELAY SHELL . IT ALSO CALCULATES THE BOUNDARIES# 
* OF THE COMMON VOLUME .ITS INPUTS ARE THE PATH LENGTH.THE % 
* BEAMWIDTH,THE ANTENNA ELEVATIONS AND THE MID SHELL HEIGHT A 
« ,j| 

SUBROUTINE UNEQU<D,HPW,PHR,PHT,ZMC,Z1,Z2,Z3,Z4,XZ2,XZ3,X1,X2; 
REAL ZMC(130)tXl(130)«XZ(130) 
SR=SIN(PHR) 
ST=SIN(PHT) 
CSR=COS(PHR) 
CST=COS(PHT) 
TS=TAN(HPW) 
AR=SR*SR-(CSR»CSR)*(TS»TS) 
AT=ST*ST*(CST*CST)*(TS*TS) 
Z1=D*(TAN(PHR-HPW))*(TAN(PHT~HPW))/(TAN(PHT-HPW)+ 

+TAN(PHR-HPW)) 
22=D«(TAN(PHR-HPW))«(TAN(PHT+HPK))/(TANCPHR-HPW)+ 

+TAN(PHT+HPW)) 
Z3=D*(TAN(PHR+HPW))*(TAN(PHT-HPW))/(TANIPHR+HPW)+ 

+TAN(PHT-HPW)) 
Z4=D*(TAN(PHR +HPW))«(TAN(PHT+HPW))/(TAN(PHR+HPW)+ 

+TAN(PHT+HPW)) 
XZ2=Z2/TAN(PHR-HPW) 
X23a23/TAN(PHR+HPW) 
DO 30 1=4,100 
X1(I)=0.0 
X2(I)=0.0 
IF((ZMC(I)•GT.Zl)•AND.(ZMC(I).LE.Z4))THEN 
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"XF<XTl.GT.XT2)THEN 
XllsXTl 
ELSE 
X11=XT2 
ENDIF 

400 X1(I)=X11 
X2(I)=X12 
ENDIF 

30 CONTINUE 
RETURN 
END 

C *#*»****************#****#************************************* * 
C « THE SUBROUTINE POWER CALCULATES THE DIFFERENTIAL ISOTROPIC * 
C » SCATTERED POWER AT DISCRETE CROSSPATH DISTANCES FOR EACH * 
C « TIME DELAY SHELL . ITS INPUTS ARE THE X AND Z BOUNDARIES # 
C » FOR THE CORRESPONDING DISCRETE CROSSPATH DISTANCES TO BE USED » 
C » AS INTEGRATION LIMITS • THE HALF-POWER BEAMWIDTH.AND THE « 
C » ANTENNAS ELEVATIONS . THE PROGRAM UTILIZES A FIVE-POINT * 
C * GAUSS-LEGENDRE INTEGRATION TECHNIQUE • # 

SUBROUTINE P0WER(D,THPW,PHR,PHT,X1P,X2P,Z1P,Z2P,YP,P0) 
REAL X1P(30),X2P(30),ZIP(30)•Z2P(30)»X(5)•Z(5)•Af5)*B(5)t 

+YP<30),P0(30) 
A(i)=.236926885 
A(2)=.47862867 
A(3)=.568889 
A(4)=A(2) 
A(5)SA(1) 
B(l)=-0.9061798 
B(2)=-0.5384693 
B(3)=0.0 
B(4)s-B<2) 
B(5)=-B(l) 
EX=2/((.85*THPW)»*2) 
PHH=PHR*»2+PHT»*2 
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c * MAIN PROGRAM tfZ USED FOR EQUAL » 
C * ANTENNAS ELEVATION * 
C « » 
C « PURPOSE * 
C * THIS PROGRAM IS USE TO CALCULATE THE DISTRIBUTION OF THE* 
C * ISOTROPIC SCATTERED POWER AS A FUNCTION OF THE CROSSPATH * 
C * DISTANCE FOR EACH TIME DELAY SHELL IN A TROPOSPHERIC SCATTER * 
C * LINK UTILIZING RAKE RECEIVER . ALL THE PARAMETERS AND THE * 
C « COMMENTS EXPLAINED IN MAIN PROGRAM 01 FOR UNEQUAL ELEVATIONS* 
C * CARRY THE SAME INTERPRETATION IN THIS PROGRAM AND WILL NOT * 
C * BE EXPLAINED HERE . THE COORDINATE SYSTEM IS CONVENIENTLY * 
C * CHOSEN TO BE AT MIDPATH . IT SHOULD BE NOTICED THAT THE * 
C * ANTENNAS ELEVATION IS EQUAL * 
C # * 
C * SUBROUTINE CALL EQUAL * 
C « SUBROUTINE CALL POWER * 
C * » 

REAL ZC<130) •ZS( 130) •TAU(130)»DZ(130) tPOOOl »ZMC(130) .Xl( 130) » 
+X2(130),YP(30)•ZP(30)>ZIP(30),Z2P(30),X1P(30),X2P(30),PL(30), 
+YP2(30) 
PI=3.14159265 
0=406.0 
THPW=2.6*PI/180 
HPW=THPW/2 
PHR=D/17000.+HPW 
PHTsPHR 
TN=TAN(D/17000.) 
SN=SIN(D/17000.) 
RG=8500.*TN 
XC=8500.*SN 
ZGC=XC*TN 
ZSC=6S00.-XC/TN 
DELTA=0.2 
TAU(1)=0.0 

ro 
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CALL P0WER(D,THPW,PHR,PHT,X1P,X2P,Z1P,Z2P,YP,P0) 
PRINT 3»K*ZHC(K)*Z1T»Y1T*P0(1)  
F0RMAT(*1 ' ,2X, I3 ,2X,4(F11.7 ,3X) )  
YSsPOCl) 
DO 40 J=1,21 
PO<J)=PO<JÏ/YS 
PRINT 4*VP(J).P0(J) 
F0RMATC»0* ,2X,2(F11.7 ,2X1)  
IF(J.NE.2i)THEN 
PL(J)SALOG<PO(J) ) 
YP2CJ)=YPIJ)«YPCJ) 
ENDIF 
CONTINUE 
SPL=0.0 
SYP2=0.0 
SPLYsO.O 
5YP22=0.0 
00 55 1=1,20 
SPL=SPL+PL(1) 
SYP2=SYP2+YP2(I) 
SPLY=SPLY+PL(I)*YP2(I) 
SYP22=SYP22+YP2(I)«YP2tII 
CONTINUE 
AI=(SPLY»SPL*SYP2/20.0)/(SYP22-SYP2»SYP2/20.0; 
B0s(SPL/2Û.0)-(AI4SYP2/20.0) 
BO=EXP(BO ) 
PRINT,AI,BO 
ENDIF .V 
CONTINUE 
STOP 
END 

« THE SUBROUTINE EQUAL CALCALATES THE X AND Z BOUNDARIES » 
* OF EACH TIME DELAY SHELL CORRESPONDING TO THE GREAT CIRCLE » 
« PATH . IT ALSO CALCULATES THE BOUNDARIES OF THE COMMON * 
* VOLUME . * 

'  * & * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  



www.manaraa.com

SUBROUTINE EQUAL(D,HPW.PHR,ZMC,Zl,Z2,Z3,Z4,XZ2,XZ3*Xl,X2) 
REAL X1(130),X2(130),ZMC<130) 
SsSINtPHRl 
CS=COS(PHR) 
TS=TAN(HPW) 
A1=S*S-*CS*CS)*(TS*TS) 
Z1=(D/2)»TAN(PHR-HPW) 
Z2=D*(TAN(PHR-HPW)#TAN(PHR+HPW))/(TAN(PHR-HPW)+TAN(PHR+HPW)) 
Z3=Z2 
Z4=(D/2)*TAN(PHR+HPW) 
XZ2=Z2/TAN(PHR+HPW) 
XZ3=Z2/TAN(PHR-HPW) 
DO 20 1=1,100 
X1(I)=0.0 
X2(I)=0.0 
1F((ZMC< D.GT.ZD.AND.fZMCd) .LT.Z4nTHEN 
B1=-2*ZMC(I)*5*CS»41+TS*TS) 
C1=ZMC<I)*ZMC(I)*(CS*CS-(S*S)»(TS#TS)) 
X11=(TB1+S0RT(B1»B1-4*A1*C1))/(2*A1) 
X12=^(B1/A1)-X11 
Xll=ABS(Xll-D/2) 
X12sABS(X12-0/2) 
IFIX11.GT.X12)THEN 
X11=X12 
ENDIF 
X1(I)=X11 
X2(I)=-X11 
ENDIF 
CONTINUE 
RETURN 
END 
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X. APPENDIX C: WATFIV COMPUTER PROGRAM FOR CALCULATING 
THE DELAY POWER SPECTRA BASED ON AN 
ANISOTROPIC SCATTERING MODEL 



www.manaraa.com

c » MAIN PROGRAM * 
C » PURPOSE « 
C » TO EVALUATE THE DELAY POWER SPECTRA OF TROPOSCATTER LINKS* 
C » NORMALIZED TO UNIT AREA. ALSO THE PROGRAM CALCULATES THE * 
C * DIFFERENT PARAMETERS OF MULTIPATH SPREAD, MEAN DELAY, SKEW * 
C * .AND EXCESS. IT CALCCULATE THE DELAY POWER SPECTRA BASED ON « 
C » AN ANISOTROPIC SCATTERING MODEL PRESENTED IN CHAPTER IV . « 
C * * 
C » DESCRIPTION OF PARAMETERS « 
C « * 
c » N : NUMBER OF POINTS FOR WHICH THE DELAY POWER * 
C * SPECTRUM IS CALCULATED . IT IS CHOSEN TO BE « 
C » EVEN INTEGER * 
C » D : PATH LENGTH IN KM * 
C » R : EFFECTIVE EARTH RADIUS IN KM » 
C » HPBW :HALF POWER BEAMWIOTH OF THE ANTENNAS • IDENTICAL * 
C » TRANSMITTING AND RECEIVING ANTENNAS ARE ASSUMED « 
C » DELTA :RES0LUTI0N OF THE DELAY POWER SPECTRUM * 
C * GRT, GRR :GRAZING ELEVATIONS OF BOTH THE TRANSMITTER AND * 
C » THE RECEIVER ABOVE THE CHORD RESPECTIVELY * 
C » ELT» ELR :ELEVATI0NS OF TRANSMITTING AND RECEIVING ANTENNA * 
C » BEAMS ABOVE THE CHORD * 
C * TAU(N) : IS THE TIME DELAY WITH RESPECT TO THE HORIZON * 
C » X(N) ;IS A NORMALIZED DELAY PARAMETER » 
C * P(N) : IS THE VALUE OF THE DELAY POWER SPECTRA CORRESP- » 
C » ONDING TO DELAY TAU(N) « 
C « * 
C « SUBROUTINE CALL : POWER * 
C * SUBROUTINE CALL : SIMPSN » 
C » * 
C #***********#*************************************************** 
C 
C 

REAL P(512)»X(512),PT(512),PT2(512).PT3(512),PT4(512)*TAU(512), 
+ANIS(512) 
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1̂ =128 
M=7 
N1=N-1 
N2=(2**M)/2 
PI=3.141592654 
D=406.0 
R=8500.0 
HPBW=2.Ô*PI/180.0 
THE MINIMUM NORMALIZED DELAY BASED ON SMOOTH EARTH HORIZONS 
DMIN=D*D/(8»R*R) 
DELTA=0.02 
GRAZING ELEVATIONS ABOVE THE CHORD BASED ON SMOOTH EARTH 
HORIZONS 
GRT=D/(2*R) 
GRR=D/(2*R) 
ELT=GRT 
ELR=GRR 
DO 10 1=1,N 
TAU(I)=<I-1)*DELTA 
X(I)=DMIN+0.3«TAU(I)/0 

THE AN ANISOTROPY PROFILE IS INSERTED HERE AS THE MATRIX 
ANIS(N) CALCULATED FOR EACH TIME DELAY 
DO 200 1=1,N 
ANISCI)=1+8*TAU(I) 
CALL TO SUBROUTINE POWER TO CALCULATE THE DELAY POWER SPECTRA 

CALL POWER(HPBW.X,ELT,ELR,GRT,GRR,N,P,ANIS) 
PRINT 1 
FORMATCM *,*POINTW',4X,'NORMLAIZED DELAY*115X»'ZDPOWER') 
DO 20 1=1,N 
PRINT 3,1,X(I),P(I) 
FORMAT(• •,I3,6X,E14.5,14X»E14.5) 
CONTINUE 
CALL TO SUBROUTINE SIMPSN TO CALCULATE THE AREA UNDER THE DELAY 
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POWER SPECTRA 
CALL SIMPSN(P,DELTA,NI,SP) 
PRINT,'AREA UNDER DELAY POWER SPECTRA', SP 
PRINT 5 
FORMAT*'1*,'POINT#',2X,'TIME DELAY',9X*'NORMALIZED DELAY',13X, 

•'NORMALIZED ZDPOWER') 
DO 30 1=1,N 
P(II=P(I)/SP 
PT(I)=P(I )*TAU(I) 
PRINT 7,I,TAU(I),X(I),P(I) 
FORMAT*' ',I3,6X,F5.3,14X.E14.5.14X,E14.5) 
CONTINUE 
CALL SIMPSNiP,DELTA,Ni,SP) 
CALL SIMPSN(PT,DELTA,N1,SP1) 
DO 40 1=1,N 
XSP=TAU(I)-SPl 
PT2CI)=P(1)»(XSP**2) 
PT3(I)=P(I)»(XSP**3) 
PT4(I)=P<I)*(XSP»*4) 
PRINT 9 
FORMAT('1','AREA',10X,'CENTROID',8X»'2ND MOMENT',5X,' SKEW 

+5X, ' EXCESS ' ,5X-, 'MULTIPATH SPREAD') 
CALL SIMPSN(PT2,DELTA,N1,SP2) 
CALL SIMPSN(PT3,DELTA,N1,SP3) 
CALL SIMPSN<PT4,DELTA,N1,SP4) 
THE MULTIPATH SPREAD PARAMETER 
PSP=SQRT(SP2) 
THE SKEW PARAMETER WHICH MEASURE THE ASYMMETRY OF THE DELAY 
POWER SPECTRA 
BETA3=(SP3/SP2*»1.5) 
THE EXCESS PARAMETER WHICH MEASURE THE PEAKNESS OF THE DELAY 
POWER SPECTRA 
EXCESS=(SP4/SP2»»2) 
PRINT 11,SP,SP1,SP2.BETA3,EXCESS,PSP 
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CO 

0'0=(%)d 
N'Z=X 02 00 

yi3*W13+il3*il3=A13 
0*0=Cl)d 

0"E/0'11=i 
(MadH*MQdH»9E"0)/1=X3 

(t)Q-=(9)Q 
(Z)Q-=(S)8 
(e)8-=(t)8 

ZtISô9tZE6'=(C)e 
S98E60Zt99'=(Z;8 
T9ei6i9ecz*=(T)a 

{I)V=(9)V 
I Z ) V = C 9 ) V  
(E)V=(t)V 

tZôttZETA%'=(E)V 
0EZ.SI9/.09C* = <2) V 
9 t E 6 E % 6 1 9 t '  =  ( I ) V  

3 
N0IlVd93iNI nVDIdawnN 3H1 do SiNVlSNOD 3 

( 2 I Q ) S 1 N V « ( 0 I ) Q ' ( 0 I ) V ' ( Z I S ) X ' ( 2 t G ) d  I V S d  
(siNv'd'N'wy9'iW9'yi3'in3'x'M8dH)y3M0d 3NIinowsns 

****************************************************************** 3 
» * 3 
* . • 3n01NHD3Jl* D 
* N0I1VMD31NI nV3Id3HnN INIOd-XIS 3aaN3931-SSnV9 V SSZITIIH W3MÙd* D' 
*3NIinOW8nS 3Hi •3dVHS NI NVISSnV9 38 01 a3WnSSV 3dV SVNN3iNV 3Hi» D 
« SXNIOd AVigq JO WSewnN 3H1 ONV • XIWIVW 31IjOMd AdOMiOSINV 3Hi* D 
» 'SN0IiVA313 WV30 W3iN33 3H1 *SN0IiVA313 9NIZVW9 3H1 'HiOIM* 3 
« -WV38 dSMOd dnVH VNN31NV 3H1 3dV SlfldNI Sil" SXNIT d311 V3S0dQdl* 3 
* , ilOJ Vdi33dS d3N0d AVISO 3H1 S3iVin31V3 dSMOd SNIinOdSnS 3H1 * D 
****************************************************************** 3 

ON 3 
dOiS 

((X9*9*6J)9*/*. ,)iVWdOj II 
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SQ=SQRT(2«X(K)) 
AL=GRT/SQ 
BL=SQ/GRR 
DO 30 1=1,6 
XIP=0.5*(BL-AL)*B(I)+0.5*(BL+AL) 
Xl=l/XIP 
X2=XIP+X1 
X22=XIP*XIP+X1*X1 
ARS=-EX*<SQ»SQ*X22-2»SQ*(ELR*X1+ELT*XIP)+ELV) 
FX=EXP(ARS)*X1*(l/X2»*(T-2)) 
P(K»=P(K)+A(I)«FX 

30 CONTINUE 
P(K)=P(K)*(1/X(K)**<1+T/2))»((BL-AL)/2)*(ANIS(K)**2) 

20 CONTINUE 
RETURN 
END 

C **********************************#******#********************#***#*** 
C * THE SUBROUTINE SIMPSN CALCULATES THE AREA UNDER A CERTAIN CURVE * 
C * .IT UTILIZES SIMPSON NUMERICAL INTEGRATION METHOD .ITS INPUTS * 
C » ARE THE VALUES OF THE FUNCTION.THE NUMBER OF POINTS, AND THE STEP « 
C « SIZE » 
^ ^ « 

SUBROUTINE SIMPSN(P.DELTA*N1•SP) 
REAL P( 512) 
K=N1-1 
L = K-1 
SPE=0.0 
SP0=0.0 
DO 10 1=2,K.2 

10 SPE=SPE+P(I) 
DO 20 1=3,L.2 

20 SPO=SPO+Pn) 
SP=(DELTA/3)*(P(1)+4*SPE+2*SP0+P(N1)) 
RETURN 
END 

SENTRY 
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