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I. GENERAL INTRODUCTION

The effect of the anisotropy of the scattering in the atmosphere on
the multipath spread of the forward scattered signals is studied in
this thesis. It is found that the shape of the delay power spectra and
its corresponding statistics are very dependent on the profile of the
average anisotropy coefficient., Several theoretical profiles and their
corresponding delay power spectra have been studied. The corresponding
effect on the bit error rate (BER) of binary communication systems is
also presented.

Several different propagation theories have been proposed for
interpreting signals received on transhorizon radio paths. Prominent
among these are: 1) the "reflection from stratified layers" model
developed by Friis et al. [1], and 2) the "scattering from isotropic
turbulence” model developed by Booker-Gordon [2] and Tatarski [3].
However, atmospheric turbulence always'contains large scale components
which are far from being isotropic, while reflection by layers is
dominant only when there are temperature inversions. Thus, interpreting
transhorizon signals on the basis of an anisotropic turbulence model is
more representative of the true nature of the atmosphere. In addition,
the degree of anisotropy is very closely related to the dynamic
stability of the atmosphere [4]. Birkemeier [4] has indicated that the
degree of anisotropy affects the multipath spread of the forward scattered
signals. Bello et al. [5-7] have developed a mathematical model based on
the statistics of the delay power spectra. They have shown-fhat the

multipath spreéd is a basic parameter that affects the irreducible bit



error rate, produced by frequency selective fading.

Data taken from the Iowa State University - University of Wisconsin
RAKE radar system are used in the present study. This system operates
over a 406 km path at 940 MHz. The RAKE receiver effectively splits the
common volume into time delay shells. The system uses a pseudorandom
code modulation of 5 or 10 MHz which provides a delay resolution of 0.2
or 0.1 microseconds. A microprocessor based data acquisition and analysis
system, designed for the tropospheric project calculates the Doppler
spectra of each time delay shell. These spectra are further processed
to extract the anisotropy coefficient and its variation with height.

Direct measurements of atmospheric anisotropy have not been attempted
due to the difficulties associated with measuring small scale refractivity
fluctuations in three dimensions simultaneously in time and space. This
thesis utilizes a simple model that is capable of characterizing the
anisotropy of the scattering process. The model combines the "reflection
by layer" theory and a “"scattering by anisotropic turbulence" model
deveioped by Birkemeier et al. [8]

The simplified model offers definite advantages for the process of
extracting the anisotropy coefficient from the Doppler frequency
distribution of the received signals.

Chapter II presents an overviewfof the theories of the troposcatter
propagation; both the reflection theory and turbulence theory are reviewed
together with the anisotropic correlation functions and their
corresponding spectra. The forward scatter radar geometry and the

coordinate system of the RAKE receiver are also presented. Chapter III



presents the simplified Gaussian shaped anisotropic model. A computer
program is developed to calculate the theoretical received power as a
function of the cross-path position of the scatterers for the different
time delay shells of the RAKE receiver. These are further processed to
extract the anisotropy coefficient. Several experimental data are
presented which verify the ability of the model to characterize the
anisoﬁropy. Chapter IV presents the effects of the anisotropy variations
on the shape of the delay power spectra and their corresponding statistics.
Several theoretical anisotropy profiles are suggested and~their
'corresponding delay power spectra and statistics are shown. The multipath
spread parameter for each spectra is calculated. The effect of the
anisotropy on the irreducible BER due to intermodulation distortion is
studied uti]izing Bello's intermodulation theory. Chapter V concludes

this study and contains suggestions for further work.



II. REVIEW OF TROPOSPHERIC BEYOND-THE-HORIZON
PROPAGATION AND THE RAKE SYSTEM
A. Introduction

Extensive studies of beyond-the-horizon tropospheric propagation,
both theoretically and experimentally, have been reported since the late
forties. Numerous papers on the theory ~f beyond-the-horizon propagation
have been reported in the literature, among them is the paper of Booker
and Gordon in 1950 [2] that laid the foundations for scattering by
atmospheric turbulence. However, the mathematical models of the
turbulence were arbitrary and different assumptions were made. " Another
theory of beyond-the-horizon propagation was developed by
Friis et al. [1]. It was based on the assumption that beyond-the-horizon
propégation is due to reflections from a large number of randomly
disposed layers located in the common volume. Both theories have found
experimental verification. It seems evident that both scattering and
. reflection contribute to the phenomenon of propagation beyond-the-horizon.

The RAKE system has been found to be of use in overcoming some of
the multipathing problems encountered in beyond-the-horizon propagation.
This system is capable of splitting the common volume into time delay
shells, thus providing spatial information about the received signal.
It has been found of great use in characterizing the atmospheric
conditions [8].

In this éhapter, a review of the propagation theories for beyond-
the-horizon communication links is presented and the main characteristics

of this model of propagation are shown. Also, the RAKE coordinate system



and its relevant parameters are presented.

B. Scattering Theory
According to this theory, signals arriving at the receiver are the
result of scattering by a homogeneous random continuum of scatters of
differing dielectric constant. The scattered fields from different
elementary volumes are assumed to be uncorrelated, therefore, the

scattered power is given by (9]

2. (%) @ (2
A%G (1) G.(0)
P. =P, t > Zr >— 0(0,1) dv (2.1)
, (4m) R.I R2

where Pt = the transmitted power,

6,(1), 6,(0)

the transmitter and receiver antenna patterns,
respectively,

R], R2 = the distances from the transmitter and receiver
to the scattering point, and

o(o,?) = the scattering cross section per unit volume of
the random medium. It is defined to be the fraction
of incident power scattered per unit volume of the
scatterers.
Figure 2.1 shows the geometry of scattering path and the corresponding

parameters mentioned in Equation 2.1.

The whole problem of scattering lies in determining the scattering

cross section o. An expression for o is given by [9]

A A 4 4 2 -5 - -5 .
o(0,7) = X3 X [ T ! < gq(r}) ey(ry) > expiKs~(?]'-?é) dvydv,

(2.2)



unit vector of scattered signal
scattering angle
half power beam width

Yt' Yy take off angles at the trans. and the rec.,.
respectively

Z unit vector of -incident signal
0y
0

~

Figure 2.1. General troposcatter geometry



where dvi and dvé are the volume elements ar ri and ré, respectively. At
this point, it is necessary to talk briefly about the descrintions of
random fields and random processes.

A random field could be a vector field 1ike the wind velocity in a
turbu]ent atmosphere or it could be a scalar field 1ike temperature,
humidity, or dielectric constant. Random fields, as well as random
processes, are described by different methods. One method makes use of
multidimensional probability distributions which are complex and lengthy;
another method uses averages and moments of representative samples, where
different moments represent different characteristics. The use of
functions indicating the degree of independence between samples of the
random variable is common. The most common functions used are: the
correlation functfon, the structure function, and the spectral density
function. These functions will be discussed briefly since they will be

used in describing the randomness of the dielectric constant of the

atmosphere.

1. The correlation function

The correlation function is used to indicate the degree of dependence
between two different random variables at the same instant or the same
variable at different instants of time. Both time and spatial separation

are considered as follows:

(2.3)

Be(tynt,) = [F(t)) - F(g)ILF(t,) - P(t,)]

Bf(r]srz) = [f(?]) - {f—(%] )] [f*(?z) - ;*_(?2)] (2.4)



~ where Bf denotes the correlation function, f(t]) and f(tz) are samples
of the random variable at instants t1. and t,, f(?ﬁ) and f(?z) are the
corresponding functions at ?H and ?é at a certain instant. The asterisks

mean conjugate value, and the overbar means average value.

2. The structure function

The use of such functions is recommended when the mean value of a
certain random variable is not constant. The structure function De is
used to take such variations into account by considering only changes

after a period 1, or distance rys which are very small. It is defined as

0
follows,
De(ty. tp) = [F(ty) - ()72 (2.5)
De(Fys %p) = [F(F) - F(F)12 . (2.6 )

Although the structure functions are usually used to describe variables
with varying averages, they may also be used to describe stationary

variables.

3. The spectral density function

The Fourier Transform of the correlation function is the spectral

density which is defined such that
Be(ts t,) =_f:”f (W) exp (iw(ty-t;) )dw (2.7 )

Be(F> %) = 7 0p(K) exp (iK- (FpF1) K (2.8 )



where wf(w) is the spectral density function of the random process, ¢f(E)
is the three-dimensional spectral density function, and L ¢ 1/K is a
geometric measure of the size of the eddies. The importance of the
three-dimensional spectral density function is to indicate the energy
‘content of the amplitude of turbulence at different geometric lengths.
Random fields are generally classified as stationary or with a
varying mean, as homogeneous and isotropic or locally homogeneous and
isotropic, or inhomogeneous and anisotropic. Of these field categories,
%he first type is usually considered and experimentally confirmed. A
homogeneous field is called isotropic if Bf(?) depends only on r = I?I.
For isotropic fields, Df(?) = Df(r), ¢f(E) = ¢f(K). A homogeneous field
is not necessarily isotropic. For example, consider the field with the

following correlation function,

The latter field is the one which we are concerned with in this thesis.
The randomness of the dielectric constant is the main cause of
scattering in the troposphere. Following the above procedure in
describing the random fields, the permittivity e(r, t) is usually
considered time invariant, homogeneous and isotropic, e](?, t) is the

fluctuating part with zero average. Under these conditions,
<e](r']*) e](r';) > = B€(|r'§-r']*|) = B_(ry) 1 2.9)

where %:(rd) is the correlation function of the dielectric constant.

In terms of the refractive index fluctuations, we can write [9],
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Be(rd) = 4Bn(rd) . ( 2.10 )
Following Ishimaru [9], Equation 2.2 can be written as
~ay L 4 . 2.
oo, i) = 2rK" sin x.¢n(KS) (2.11)

> .
where ¢n(KS) is the three-dimensional spectral density evaluated at

> >
K=K it is given by

8, (KS) = Er%’_ [ B, (Fy) exp(ik %, )dv, . (2.12 )

Different correlation functions have been used by different authors.
Examples of these are given below, together with their corresponding

three-dimensional spectral densities,

Booker-Gordon B, (ry) = <nZ> 7"/ (2.13 )
12
Gaussian Bn(rd) = <n$>_e-(rd/1) (2.14 )
‘ 21V Ty
Bessel B (rd) = <n]> g‘( )) (—= ) K (rd/1) (2.15 )
1/2

where rq = (x] + y] +z4 ) s

' = the Gamma function,
Kv = the modified Bessel function of the second kind, and
1 = the correlation distance.

For the isotropic case, the loci of constant correlations are concentric
spheres. The above three equations can be used to describe the

anisotropic version of scattering by properly defining ry The loci of
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constant correlation become concentric ellipsoids. In this case, rq is

written as
X Yy Z
rg =1 [E2 + D7 + ((HA2 ( 2.16 )
X Yy z

where ]x’ 1., and lz are the correlation distances in x, y, and z

y
directions.

The corresponding three-dimensional spectral densities for the

isotropic versions are found by using Equation 2.12, the results are

6 (k) = > 13 L (4 + (k)92 (2.17)
T
¢, (K) = <n12> ks exp (-(KS1/2)2) (2.18)
nws 8t vw '
_ .2 13 T(v1.5) 2\-v-1.5 2.19
falks) = o> —— ZRE (+()?) (2.19)
where v>0.

For the anisotropic version of the correlation functions, the
three-dimensional spectral densities will be presented after the
coordinate system is considered. The exponential model used by Booker-
Gordon and the Gaussian model are not able to explain the detailed
characteristics of the scattering process. Complete knowledge of the
scattering phenomenon depends upon the full knowledge of turbulence.
Many authors have studied the atmospheric turbulence, the leading among
them are Kolmogorov and Obukov. The Kolmogorov spectrum, which is based
on the physics of turbulence is the most accepted one used in describing
the characteristics of scattering. A detailed description of the

Kolmogorov spectrum, as shown in Figure 2.2, 1s found in many texts [9—11]/
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Figure 2.2. Kolmogorov spectrum for the three-dimensional spectral density of the
refractive index [10]
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and is presented briefly here for completeness.

According to Kolmogorov theory, the turbulence eddies are
characterized by two sizes: the outer scale of turbulence Ld’ and the
inner scale of turbulence 10. The spectrum is mainly divided into
three regions.

a. The input range This is the range of the largest eddies (i.e. Lo)

which are generally homogeneous but not isotropic. No specific form for

the spectral density exists in this range.

b. The inertial range In this range, neither production nor

dissipation of energy takes place. The only possible means of energy
change is by inertial transfer to smaller eddies. Such a range of eddies
is called the inertial range. It is generally divided into two subranges,
the bouyant subrange in which the breaking of eddies is mainly due to
buoyant forces, and the inertial subrange in which the breakup of eddies
is mainly affected by wind forces. Within the inertial subrange, the
spectral density is given by

- 2,-11/3 2nm 2n .
6,(K) = .033 C-K L K < T (2.20 )

¢n(K)aK7]3/3 for the buoyant subrange and CE is the structure

constant of the refractive index fluctuations. The turbulence in this

range is essentially isotropic.

c. The dissipation range In this range, dissipation of energy is

dominant, the spectra are completely isotropic, and their magnitudes are

very small. Usually,
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$,(K) = o K> T;

The three regions are often combined to give

-11/6
& (K) = 0.033 C2 (K? + 1y) exp (-K2/Ka?)
L
o
which is usually called the Karman spectrum, where Km = §%2§ .
)

C. Reflection Theory

In the range of frequencies used in beyond-the-horizon propagation
(100 MHz to 10 GHz), the reflection theory of Friis et al. [1] has been
found to be relatively useful since it depends primarily on the wave
length, the distance, and the size of the antennas. lIt serves as a guide
for estimating the roles of the various parameters involved in beyond-
the-horizon propagation.

According to this theory, uncorrelated signals are received due to
reflections from random layers of different sizes that exist in common
volume. Large, intermediate, and small layers are considered by Friis,
however, case 2 (intermediate layers) is considered to be the most

prevalent. The expression for the received power for this case is given

by:
2
A,Nb
Air 2 2
P =P, —a ASq dv » (2.21)
r t 3A3a3 J;
where Pis Py = the same as in Equation 2.1,

AT’ AR = the effective areas of the transmitting and receiving
antennas,

the path length,

1

22
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>
1}

the grazing angle at the layer,

the along-the-path dimension of the reflecting
layer, and intermediate layer size is given by

v2ax < b < v2ax /A,

N = the number of layers in the common volume, and

o
]

q = the amplitude reflection coefficient of the dielectric
constant at the layer boundaries. For smooth
boundaries, it is given by

Kx sin (wn/2)
]67TA3 (1Tn/2)

where n integer positive.

Following Friis, Equation 2.21 can be written, after performing the

integration in terms of the geometries of the antennas and the path, as

follows: .
@ 2+a/@
where o = the half power beam width of the antennas,

the grazing angle of the lower edge of the
beam with respect to the chord,

C;

M = 2000 sz] 2y

the change in gradient of the dielectric
constant at the lower edge of the common volume,

1 2+a/0)

f(a/0) = 1 + —1— -
(a/ ) (]+a/@)4 T+ /0

It should be noted from the previous paragraphs that the reflection
theory is not related in any way to the turbulent state of the atmosphere
as is the more physical scattering theory. However, layers formed by

relatively sharp gradients of the refractive index have been confirmed
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experimentally and the reflection theory for such cases exhibits good
agreement with experimental data obtained. This is due to the complicated
nature of this mode of propagation. The interest in a better model to
explain these anomalies led Cianos in 1978 to look for a model that
combines both the scattering and the reflection parts. Taking into
account that part of the signal due to reflection, Cianos [12] was able

to deduce exponents of the scattering angle which agree well with the
theory of scattering based on physical arguments. As will be shown

later, reflection by layers results in large zero Doppler amplitudes of
the received signals. Also, layering is considered to contribute very

much to the anisotropy of the atmosphere.

D. The RAKE'System

In 1958, R. Price and P. E. Green [13], using the principles of
statistical communication theory, developed the RAKE Communication system
to combat multipath effects; ﬁame]y, selective fading and intersymbol
interference. D. R. Bitzer et al. [14], in 1966, adapted the RAKE system
to tropospheric scatter communication 1inks. He collected data on a |
path of 250 Km to describe a number of propagation phenomena. These
included selective fading, envelope fluctuation, diurnal variations,
correlation bandwidth of the medium, fading rates, diversity combining,
and others.

The RAKE system utilizes a wide-band signal code, having pseudo-
random character, to biphase modulate the carrier frequency. At the
receiver, an identical delayed replica of the pseudorandom code is

correlated with the received signal to yield that portion of the signal
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corresponding to the specific delay. By varying the delay or using a
bank of correlators, the total received power as a function of delay
can be resolved. Figure 2.3 shows a coordinate system for the forward
scatter radar utilizing a RAKE receiver. Constant time delays
correspond to confocal prolate spheroids with foci at the transmitter
and receiver, the x coor&inate is along the path, y is the cross path
direction and z is the vertical. The origin of this coordinate system
is usually taken at midpath. Any scattering point could be identified
either by its x, y, z components or by its azimuth, elevation, and range.
Usually, the signals received with the RAKE system are in the form
of instantaneous values of the impulse response h(t,t) for each time
delay tap. This gives insight into the time variations or fading of the
medium. Another useful representation of the signal is the "scattering

function”, which is the Fourier transform of the correlation function

of h(t,t), Rn(r,t), and is given by

V(z,fy) =.f” R (t,t) exp (i2nf t)dt " 2.23)
where

Rn(t,t) = <h(t,r) h*(t,r+¢t)> .

The shape of V(r,fd) in the frequency variable fd can be physically
interpreted as a Doppler broadening with fd as the Doppler frequency. In
the present thesis, we will depend on the shape of the scattering function
as related to the anisotropic nature of the atmosphere. References [8,

157 present a good analysis of the RAKE tropospheric scattering
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techniques to be utilized in indirect atmospheric measurements. The
system equations for determining the constant time delay contours and

the Doppler frequency for a RAKE sounding system are given here [8].

L = Tength of propagation path
= [(d-x)2 +y2 + 2212w [+ 02 +y2 + 221V (2.2
£ = signal time delay = L/C ( 2.25)
fd = Doppler frequency
=. 4 ux(1-(2d/L)%) + vy + v ( 2.26 )
AL N\E : :
1-16(xd/L¢)

In the above equations, C is the wave velocity; A is the wavelength of
the Rf signal; and u, v, w are the longitudinal, crosspath, and vertical

components of the wind, respectively.

The Doppler frequency expression in Equation 2.26 can be simplified

by observing that the term 1-;(2d/L)2 is typically very small, as is

the term (xd/Lz)z. Also, it can be assumed that the vertical wind, w,
is much less than the crosspath wind, v. Under these conditions,

Equation 2.26 reduces to

4v :
fy= - 32 ( 2.27)

Since L = 2d, Equation 2.27 can be rewritten as

= 2v (2 __2_V_- =_.2_VE )
fy= - 57—(1?5 =-sina s ( 2.28)

where o is the azimuthal angle of the scatterer.
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In the present thesis, data taken from the troposcatter radar system
with RAKE receiver operating as a cooperative project between Iowa State
University (ISU) and the University of Wisconsin (UW) will be utilized in
characterizing the anisotropy of the atmosphere. The important parameters
of this system are shown in Appendix A, the system operates between
Moingona, IA and Arlington, WI. Cross sections of thé time delay shells
in the y-z plane near midpath, for a 5 MHz modulation rate (0.2 u sec.

resolution), are shown in Appendix A.

E. Anisotropic Spectral Densities
The anisotropic versions of the correlation functions were presented
in Section 2.1. In order to write the anisotropic version of the
spectral density, the components of the scattering wave number vector
should be expressed in terms of the x, y, z axes. Referring to

Figure 2.3, the scattering angle, 0> is given by

O = Bt &y (2.29)
where

oy = arctan [(y? + 28)/%/(¢-x)] (230 )

o = arctan [(y? + 29)/%/asx] (2.31)

The direction of the vector Es can be expressed in terms of two
angles. One angle, vy, is between the x-z plane and the plane containing

the x axis, the incident ray and the scattered ray (r-x) plane, is given

by
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Y = arctan (y/z) . ( 2.32)

The other angle, u, is between the vector E; and y-z plane. It is

given by

u = (o - op)y2 { 2.33)

->
KS can now be written as

+_+ ->-+->
Kg = Ky + Kyay K,a, (2.34)
where
—+ -
Ko = K] sinu
_+. S
K, = [K| cos u siny

->
= |K| cos u cos ¥

NS
I

T - 4T _-
[Kg| = 35— sin 64/2

The anisotropic versions of the spectral densities corresponding to
Equations 2.13, 2.14, and 2.15 utilizing Equation 2.12, are 1listed below

as Equations 2.35, 2.36, and 2.37.

¢n(T<*S) = <n$> 1x1y12 gr(1+ |4 lz)'2 (2.35)

8 (R) = <n?> 111 L [ep -(]]/2)%] (2.3 )

ns TV xXyz - - 90

0n(Rg) = <np> 1,1, == [ (9#1.5)/ ()] (43T (2.37)
YT

where



22

q2 = K§'{(1§coszy+1§sinzy)c052u+1§sin2u} . ( 2.38)

Mear the midpath (x=o plane), u = o and Equation 2.38 reduces to
- 2.2 2.
q = K (1 cos™v+ 1ys1n2Y) . ( 2.39)

The anisotropic version corresponding to Equation 2.38 will be
utilized in Chapter III since it approximates the Kolmogorov spectrum

when v = 1/3.
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ITI. A SIMPLIFIED MODEL FOR EXTRACTING THE ANISOTROPY
COEFFICIENT FROM THE DOPPLER SPECTRUM
A. Introduction

Records of the Doppler frequency of signals received by a RAKE
Forward Scatter Radar Sounding system exhibit a great deal of variability
in the shape of the Doppler spectra. Much of this variability is due to
winds in the scattering volume. However, even after the effect of the
wind has been taken into account, the half power width of the Doppler
spectrum can fluctuate a great'dea1.

This effect has been explained by use of an anisotropic scattering
mode1 developed by Birkemeier et al. [8]. The anisotropy in the
scattering model accounts for the differences in the correlation length
along the different axes. In Birkemeir's model, the ratio of the
horizontal correlation distance to the vertical correlation distance is
defined as the anisotropy coefficient A. This coefficient is considered
to be a basic parameter characterizing the state of the atmosphere.

Gage et al. [16] suggest that there is a relationship between the degree
of anisotropy and the dynamic stability of the atmosphere. Birkemeier [4]
has pointed out that the degree of the anisotropy affects the multipath
spread of the forward scattered signails.

No direct measurements of atmospheric anisotropy have been tried
due to difficulties in measuring small scale refractivity temporally and
spatially. Birkemeier's model extracts the anisotropy from the Doppler
frequency data. However, this model is not amenable to the inversion

process due to the fact that received power versus Doppler frequency or
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versus crosspath position must be fit to a family of theoretical
curves using the same variables, but with A as a parameter.

This chapter.presents an approximate anisotropic scattering model
which is easily inverted and permits evaluation of the anisotropy
coefficient in a direct and simple manner. In Section B, the development

of the model is given and Section C presents the experimental verification

of the model.

B. Development of the Simplified Model:[17]

Figure 3.1 shows the kind of variations in the half power width of
the Dopp]er spectra experimentally obtained at different periods of
time. Broader width, as shown in Figure 3.la, indicates strong crosspath
winds, while smaller width, shown in Figure 3.1b, indicates signals
coming from layered atmospheric structure.

The simplified model developed here combines the transhorizon fading
model deve]bped by Crawford, Hogg and Kummer [18] and the anisotropic
' scattering model proposed by Birkemeier et al. [8]. The two models will

be discussed first, followed by a development of the simplified model.

1. Crawford model

In this model, Gaussian~-shaped characteristics for the antenna
patterns and the power reflection coefficient are assumed. The argument
of these Gaussian characteristics is the azimuthal width g8, which is
related to the crosspath wind velocity, v, and the Doppler frequency,

f,, of the received signal by Equation 2.28. After putting B = 2a, the

d
result is
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Figure 3.1. Variation of half power Doppler width
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=4 = X (3.1)

where the different parameters are defined in Figure 2.3. Figure 3.2
shows the effect of the azimuthal width on the Doppler frequency. The

antenna patterns can be expressed as

Gt(s) exp (-62/2(0.858t)2) (transmitting antenna) ( 3.2)

exp (-32/2(0.856r)2) (receiving antenna) ( 3.3)

6,.(8)

where B and B, are the half power beamwidths of the transmitting and
receiving antennas, respectively.

The formulation of Crawford et al. [18] accounts for the scattering
in the atmosphere by introducing a reflection coefficient function Q(g),

which is also assumed to be a Gaussian function of g. That is,
- 2 2
Q(B) = exp (-8°/2(0.858,)°) (3.4)

where Be is the half power azimuthal width of the reflection coefficient
function. The received power is proportional to the product of three

Gaussian shaped functions of B as follows:

P. = Const. 6.(B)G,(B)Q(B)

which can be written in terms of Br’ Bt’ and Be as follows:

a1 L1 L g2
PY‘ = Const. exp {"( 7 + 5 + 2) vl }. ( 3-5)
8.2 82 B 2(0.85)

Since B is related to the Doppler frequency by Equation 3.1, the Doppler

spectrum of the received signal can be written as



27

Gt (B) (X/7-)] Gr.(n)
e By -
\ i
Vil B
TRANSMITTING POWER REFLECTION RECEIVING
ANTENNA PATTERN COEFFICIENT ANTENNA PATTERN

-f32 -A2 =82
Exe [z_(o.aspf:)zl E"”[z(omm Exp[_2(°_-°5ﬁr—)2]

RELATIVE POWER

BtPep v
V(Be e+ (AL A +(Pe o2

Figure 3.2. Factors affecting the frequency distribution of
the received signal [18] :
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P.(f4) = Const. exp (-fd2/252) ( 3.6)

where 52 js the standard deviation of Pr(fd)_and is given by
1. L B I G

, ( - 1
2 (0.8v)% 8% g2 8% (0.881)° &

Since the half power width of the composite Doppler spectrum, éz, can be

2 2

inferred from the received signal data, and since 8 » the

includes Be
half power width of the refiection function, Q(8), ég contains

significant information about the state of the atmosphere.

2. Birkemeier's anisotropic model

The Crawfdrd model is based on a theory of "reflection from layers"
presented in Chapter II. This theory does not have the direct connection
to the turbulent state of the atmosphere that characterizes the
scattering theories developed by Tatarski [3] and others [2] presented
in Section II1.B. In an effort to resolve discrepancies between theory
énd observation, an anisotropic version of the turbulence theory of
scattering was developed by Birkemeier et al. [8]. The distinctive
feature of this model is the fntroduction of different correlation
distances to characterize the structure of turbulence along different axes.
The different forms of the anisotropic correlation functions and their
corresponding spectra are presented in Chapter II. The Tormula used by
Birkemeier is the one given by Equation 2.37, corresponding to the
Bessel corre]étion function. Under the condition, 1i K>>1 (i=x,Y52)»

the resulting spectral density of position function has the form of a
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power law as follows:

B(K) n 111, < ne > q P ( 3.7)

2

where p is taken to be 11/3, and q- is given by Equation 2.38. Near

2 is given by Equation 2.39, which is repeated here for

midpath q
convenience:

1/2
2y+1 2sirIY}

= 2
q= K.S [12 cos y

Defining A = 1y/‘|Z as the "coefficient" of anisotropy and substituting

by the value of KS = (%EQ sin (GS/Z) in Equation 3.7, we get

o(Ks) ~ A1 3an? (3T sino s2) 1/ 3(cosPy+nZsinty) 116 (3.8

where the horizontal correlation distances are assumed equal and the
vertical correlation distance remains equal to the.isotropic value 10.

Equation 3.8 can bé written as
o(Kg) = const. A% sing /2) 1V 3(1+(a2-1)sin%y) V6. (3.9)

Since we are considering data taken from a time delay shell by means of
a2 RAKE receiver system, the quantities 2 = (zz+y2)]/2, 65/2 are
approximately constant for a given time delay tap. Substituting by
siny = y/zT, Equation 3.9 can be written as

2 -11/6

¢(KS) = Const. A2 [1+(A2-1) X—EJ . " ( 3.10)
27

This function can be expressed in terms of the azimuthal width,

since sing/2 =g/2 = y/d. Equation 3.10 can be written as
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2 2 d2 B2 -11/6
¢(Ks) = const. A® [1+(A°-1) Z——E—J . ( 3.11)
z
T

3. Developing the simplified model

In order to exploit the utility of the Gaussian model developed by
Crawford, yet incorporate the scattering model based on the theory of
anisotropic turbulence, the anisotropic scattering model is fit to an
equivalent Gaussian curve. This process matches the twﬁ curves given
by Equations 3.4 and 3.11 at the maximum value, 8 = 0 and at the half
power point where B = Be in the Gaussian model. In developing this

equivalence, it is necessary that

2
1.838 z
2 T .
B S m—— ( 3-]2= )
‘The resultant form of Equation 3.11 becomes
8(8) = Const. A% [1+0.4595(s/p,)?1 116 . (3.13 )

The resulting expression describing the equivalent Gaussian approximation

to ¢(Es) as a function of y is

2 2
o
when A =1, ¢(KS) = Const. and the shape of the Doppler spectrum of the

¢(KS) = Const. A

received signal is controlled by the antenna patterns, the volume of
the time delay shell, and the scattering angle. This is the isotropic
turbulence scattering situation. A comparison of the anisotropic

scattering model with the equivalent Gaussian curve is shown in
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Figure 3.3. Note that the two curves coincide at B/Be =0 and B/Be =1;
also the disagreement between the two curves is less than three percent
for values of 3/3e Tess than 1.1.

In order to extract the anisotropy coefficient A from Doppler
distribution of the power received by a RAKE system, it is necessary to
consider the effect of the different variables such as antenna patterns,
scattering angle and volume for each time delay shell. In this process,
it is most helpful to know the fraction of the received power emanatin§
from a differential width in the cross path direction for each time
delay shell for isotropic scattering. These calculations are performed
.by a computer program developed for this purpose. The program utilizes
the radar equation, assuming Gaussian antenna patterns of 2.6° beam
width and isotropic scattering in the inertial subrange of Kolmogorov
spectrum. The computer program is shown in Appendix B.

The normalized differential power versus y curve is approximately

Gaussian in character and can be represented by an equation of the form

Pj(y) = Cp5 exp (-anyZ) ( 3.15.)

where the index j indicates the tap number corresponding to the jth
time delay shell and the index I means isotropic scattering. This
expression is combined with the equivalent anisotropic scattering
function given by Equation 3.14. The result is
_ a2 1.506 2 _ 2
Pj(y) = A;© Cpy exp L {ag; + __—ZTZ (Aj 1)} y°1. ( 3.16 )

Equation 3.16 can be expressed in terms of the Doppler frequency, fd,
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instead of y by using the relationship given in Equation 2.27, written

in the following form,

_ad
y=-2vfq-

The result is

2.2
= a.2 Ad” 1.506 (, 2_ 2
P3(Fg) = A5~ Cpy exp [4v z 35+ 2 (A;"-1)} £4°1 . (3.17)
J T

In the case of ISU-UW Radar system, Equation 3.17 can be written as,

Zopy e - 02 A + 1B (A Py £ f1 (3.8)

where v is the crosspath wind in m/sec.

Pi(fa) = A" Cyy

The received signal from a given tap can be processed through a
Fast Fourier Transform routine to determine its Doppler spectrum. This

data is then fit to an equivalent Gaussian curve of the form
2

If the crosspath wind, v, is known or can be estimated, one can
determine the anisotropy coefficient A by equating the argument of the
exponential term of Equation 3.18 to the exponential term of

Equation 3.19. That is,

1049 1, ,+M9§_(A,2_1)]=B. ( 3.20)
v 2 13 2 2 -J J
j T
from which
v 2 z 2 1/2

B.v.
= JdJ T
A; = Lo - 2g) Towos * (3.21)
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The parameters arss Yy and Bj are assumed to be known, so the remaining

J° J
unknown is the anisotropy coefficient Aj, which can be readily determined.
Next, the calculations and experimental data required to extract the

value of A are presented.

C. Experimental Verification of the Simplified Model
The different parameters encountered in Equation 3.21 will be

presented and discussed.

1. The isotropic component of the argument an

The normalized differential scattered power emanating from a
differential crosspath distance is calculated from the radar eqﬁation

where the power scattered from a scatterer at x, y, z can be written as

Gt(x,y,z) Gr(x’.Yaz) ~ A
Pr(x,y,z) ~ Py 5 . 5— O (i,0)dxdydz . ( 3.22)

The parameters in the above equation can be written in terms of

X, ¥, Z coordinates for the RAKE system as follows:

is the distance from the transmitter to the scattering point.

R2 = ()2 + 22 + 47

is the distance from the receiver to the scattering point.
The antenna patterns are assumed to be Gaussian in shape. This is
an often used assumption which is simple and quite accurate. In terms

of the azimuth and elevation angles of the scattering point, measured
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from the beam axis, the patterns can be written as follows:

(3]
1}

G, exp {-(1n2) [( ) + (———0 ]} ( 3.23)

to

G

p = G, exp {-(In2) [( ) + (—~—0 ]} ( 3.24)

where o] and ¢] are the half power beamwidths of the transmitting
antenna in the vertical and the horizontal, respectively; and 02 and ¢2
_are the half power beamwidths of the receiving antenna in the vertical
and horizontal, respectively. 0(3,?) is the scattering cross section
given by Equation 2.11, which for isotropic scattering following the

Kolmogorov spectrum, is given in terms of es as
ofeg) = 0.03¢ 2"V 3sin?x sin11/3(e /2) ( 3.25)

The details of these calculations and the computer program developed
for this purpose are given in Appendix B. Here, representative samples
of these calculations together with their corresponding plots for the
di fferent conditions of elevation and delay resolution are presented. A
Gaussian fit for these curves is also done. Figures 3.4 and 3.5 show
the calculations for unsymmetrical elevation conditions in which the
elevation of the receiver beam is 0.5° and that of the transmitter is
1.1°. These elevations result in sufficient received power for the
experiments. Two different resolutions of 0.1 and 0.2 microseconds are
used corresponding to modulation frequencies of 10 and 5 MHz.

Figures 3.6 and 3.7 show the calculations for symmetrical elevations of

2.4° for both the transmitter and the receiver. The plots are given for
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Figure 3.6. Isotropic normalized received power vs crosspath position for taps 15, 20 and 30
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the same modulation frequencies of 10 and 5 MHz. Other similar plots
are generated for the whole common volume.

In order to extract the parameter an in Equation 3.20, a Gaussian
least square fit for the curves is performed for all the taps included
in the common volume. For the samples presented, the Gaussian fit is
shown on the corresponding curve beside its tap height. It should be
noticed that the parameter ar; for a given elevation and resolution tends

J
to decrease as the tap height increases, and reaches a minimum before

it increases again.

2. The crosspath wind speed

The crosspath wind plays an important role in determining the
Doppler frequency, as shown in Chapter II, Equation 2.27. The wind data
used in our analysis is a forecasted wind aloft from the nearest
 meteoro1ogica1 station to the common volume. This station is at Dubuque,
Iowa, which i§ about 50 Km from the line joining the transmitter at the
Fick Observatory, Ames, Iowa and the receiver at Arlington, Wisconsin.
This T1ine is 70° East of North. Table 3.1 shows a sample of the
forecasted wind at Dubuque, Iowa on April 2, 1981.

It should be emphasized here that the wind data used in our
analysis is a forecasted wind near the ccmmon volume. This is all we
have at the present time, while actual crosspath. wind at the common
volume should be used in Equation 3.21. This problem arises whenever
one attempts to use Doppler frequency information to determine the
anisotropy coefficient and it is independent of the scattering model

employed in the process. Birkemeier et al. [19] have shown that the
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Table 3.1. Wind aloft at Dubuque on Apri] 2, 1981

Height in meters Wind speed in m/s ADirectiqn.fYom North in degrees
3658 16.923 260
5486 25.641 270
7315 30.769 : 270
9144 37.436 280
10363 42.564 280
11887 45.641 280

RAKE system is capable of measuring the cross path wind. To do so
requires that a characteristic wind "signature" be recognized in the
scattering function plot. Because this method requires the analysis of
the spectra of several time delay taps at a given instant of time, it will

- not be used in our analysis.

3. The coefficient Bj

The data coming from the RAKE receiver are in the form of voltages,
both the inphase "I" and the Quadrature "Q" components are obtained. A
microprocessor based data acquisition and analysis system developed
especially for the troposcatter project at ISU is used in calculatirg
the Doppler spectra of the received signal. This system has two parts;
one at the receiver site in Arlington, WI that sequentia11y samples both
the I and Q components of the signal for each tap at a rate of 28.41

samples/sec. The sampled data are digitized and recorded on a tape
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cassette for further processing. Information such as date, time, tap
given, and tap gain are also recorded at the beginning of each tap
record. The second part of the data acquisition system is in Ames,Iowa.
This part processes the recorded data, calculates the Fast Fourier
Transform and plots the Doppler spectrum for each tap. Samples of the
form of the output plots are shown in Figures 3.8 through 3.10. These
samples correspond to data taken on November 20, 1981. The antenna
elevations were 1.1° and 0.5° for the transmitter and receiver,
respectively. The modulation frequency was 5 MHz. The samples show the
nature of the variations in the half power width of the Doppler spectra.
In tap 14, the width is comparably smaller with respect to tap 1 which
is a typical representative. Tap 3 shows a broadening of the Doppler
spectrum.

The coefficient Bj in Equation 3.21 is found by a Gaussian least
square fit in the form of Equation 3.19 for the Doppler spectrum for each
tap. Equation 3.19 can be put in a convenient form for linear

regression as follows:
10 Tog; P(f4) = 10 TogyoCys - (IOBj'log.loe)fdz . ( 3.26 )

Thus, a regression between the received power in dB, 10 1ogP(fd),

2 will give the first term and the

and the Doppler frequency sqﬁared fd
factor between parentheses in Equation 3.26, which includes Bj. The
data are fitted to points from around the zero Doppler out to those

points for which the power is well below the 3dB level, since we are

interested only in the half power width of the Doppler spectrum. It is
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found that 10 data points above and below the zero Doppler, besides
‘the zero Doppler point, together with intermediate cross path wind speed
give the most satisfactory anisotropy coefficient. A short program is
written to calculate the parameter Bj and C2j for each tap based on the

data points for that tap.

4, TIllustrative examples

A11 the parameters needed for the inversion process to get the
anisotropy coefficient A from Equation 3.21 have been discussed in the
preceding section. Since we do not have the facilities for radio
sounding at midpath to get more accurate meteorological information, no
concentrated runs over several consecutive days were performed.

Instead, runs every two or three weeks were carried out through 1981 and
1982. Forecasted wind information aloft, which is provided by the
.National Weather Service Office in Des Moines, was used.

Among the data available, the analysis for data of April 2,
November 20, 1981 and March 11, April 6, 1982 are presented. The
results are shown in the form of variation of the anistropy coefficient
A with tap number (height, or delay) in Figures 3.11 through 3.14 for
the mentioned dates. Tables 3.2 through 3.9 summarize the necessary
calculations. Two runs are usually shown for each date to show the
stationarity of the atmosphere and to get some kind of average value of
A. In all the figures, the two runs for each day show nearly the same
typerf variation of A with tap numbers which indicate that the atmosphere
is stationary during the course of the measurements. It should be

noticed that due to some difficulties in the data taking or reading the
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Table 3.2. Data of April 2, 1981, Run 1; Trans. Elevation = 1.1°, Rec.
Elevation = 0.5°; Resolution = 0.1 microseconds
T;p zT(Km) V(m/s) Ln P(fd) 10 log P(fd) Bj Aj
1 5.145  8.46  0.073-0.354 y2 50.28-59.26 faz 13.65 3.34
2 5.708 8.46  0.093-0.287 y2 51.29-53.47 fd2 12.31 3.6
3 6.22 8.46  0.115-0.245 y2 49.57-35.36 fdz 8.14 3.0
4 6.692 8.46  0.112-0.221 y2 49.95-45.38 fdz 10.45 3.95
5 7.134 12.82  0.106-0.204 y2 53.16-48.41 fd2 11.38 7.37
6 7.549 12.82  0.100-0.192 y2 46.46-57.98 de 13.35 8.54
7 7.942 12.82  0.092-0.184 y2 53.38-63.56 fd2 14.64 9.45
8 8.317 12.82  0.083-0.178 y2 52.20-43.82 de 10.09 8.09
9 8.676 12.82  0.0725-0.175 y2 50.44-35.43 fdz 8.16 7.49
10 9.021 15.38  0.062-0.173 y2 48.92-39.31 de 9.05 10.7
11 9.353 15.38 0.050-0.174 y2 46.66-20.99 faz 4.833 7.36
12 9.673 15.38  0.039-0.176 y2 42.78-32.18 fd2 7.41 2.69
13 9.983 15.38  0.027-0.182 y2 41.22-43.19 fdz 9.94 11.72
15 10.577 15.38  0.004-0.203 y2 38.24-58.88 fd2 13.56  14.6
17 11.138 24.06 -0.017-0.250 y2 38.22-58.32 fdz 13.43 24.31
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Table 3.3. Data of April 2, 1981, Run 2; Trans. Elevation = 1.1°, Rec.
Elevation = 0.5°; Resolution = 0.1 microseconds
T;p zT(Km) V(m/s) Ln P(fd) 10 log P(fd) Bj Aj
2 5.708 8.46 0.093-0.287 y2 50.42-36.94 fdz 8.51 2.7
3 6.22 8.46 0.115-0.245 y2 54.66-51.68 fdz 11.94 3.94
4 6.692 8.46 0.112-0.221 y2 50.96-64.49 fdz 14.85 4.96
5 7.134 12.82 0.106-0.204 y2 56.}1-49.21 fd2 11.33 7.36
6 7.549 12.82 0.100-0.192 y2 56.23-40.74 fd2 9.38 8.59
7 7.942 12.82  0.092-0.184y°  60.84-34.79 2 8.01  6.77
8 8.317 12.82 0.083-0.178 y2 57.33-43.33 fdz 9.98 8.04
9 8.676 12.82 0.073-0.175 y2 56.88-41.86 fd2 9.64 8.23
10 9.021 15.38 0.062-0.173 y2 58.18-33.16 fdz 7.63 9.2
11 9.353 15.38 0.050-0.174 y2 55.73-30.05 fdz 6.923 9.03
12 9.673 15.38 0.039-0.176 y2 55.88-37.24 fd2 8.57 10.5
13 9.983 15.38 0.027-07182 y2 54.09-26.49 fd2 6.14 8.94
14 10.284 15.38 0.015-0.19 y2 51.68-32.95 fdz 7.59 10.38
16 10.861 24.06 -0.007-0.221 y2 51.32-44.06 fdz 10.14 20.55
18 11.409 24.06 -0.026-0.297 y2 46.16-42.21 fdz 9.72 20.95
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Table 3.4. Data of Nov. 20, 1981, Run 1; Trans. Elevation = 1.1°, Rec.
Elevation = 0.5°; Resolution = 0.2 microseconds

T;p zT(Km) V(m/s) Ln P(fd) 10 log P(fd) Bj Aj

1 5.412 14.35 0.079-0.32 y?  52.83-38.89 f°  8.95  5.39
2 6.447 14.35 0.112-0.233 y*  55.78-30.86 f,°  7.11  5.75
3 7.3% 15.96 0.103-0.198 y*  60.98-40.27 f,2  9.27  8.59
4 812 15.92 0.087-0.181 y*  52.05-40.44 £,2  9.31  9.56
5 8.85 15.92 0.067-0.174 y°  56.69-46.89 f,2  10.88  11.27
6 9.51 18.46 0.045-0.175 y*  49.77-39.66 f°  9.13  12.99
7 10.131 18.46  0.021-0.185 y*  44.77-31.32 f 2 7.21  12.17
8 10.717 18.46 -0.002-0.211 y°  52.64-27.96 f,°  6.44  12.02
9 11.272 16.41 -0.022-0.27 y° 54.87-35.47 f,°  8.17  12.45

10 11.801 16.41 -0.038-0.463 y°  54.13-49.57 £ 11.41  15.15
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Table 3.5. Data of Nov. 20, 1981, Run 2; Trans. Elevation - 1.1°, Rec.
Elevation = 0.5°; Resolution = 0.2 microseconds
T;p zT(Km) V(m/s) Ln P(fd) 10 log P(fd) BJ. Aj
1 5412 14.35 0.079-0.32 y° 57.17-39.3 f,2  9.06  5.42
2 6.447 14.36 0.112-0.233 y2 59.01-58.15 fd2 13.39 8.2
4 8.126 15.9 0.087-0.181 y2 52.23-42.04 fd2 9.68 9.76
6 9.51 18.46 0.045-0.175 y2 54.29-37.45 fd2 8.62 12.6
7 10.131 18.46 0.021-0.185 y2 53.30-33.38_fd2 7.69 12.59
8 10.717 18.46 -0.002-0.211 y2 46.69-21.65 fd2 4.98. 10.41
9 11.272 16.41 -0.022-027 y2 52.67-33.26 fd2 7.66 12.0
10 11.801 16.41 -0.038-0.463 y2 51.60-43.567fd2 10.03 14.01
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Table 3.6. Data of March 11, 1982, Run 1; Trans. Elevation = 2.5°, Rec.
Elevation = 1°; Resolution = 0.2 microseconds

T;p zT(Km) V(m/s) Ln P(fd) 10 log P(fd) Bj AJ-
1 5.412 12.18  0.053-0.97 y°  51.01-56.04 f,2  12.9 4.2
2 6.447 12.18  0.070-0.421y°  55.77-23.15 f 2 8.5  4.77
3 7.335 16.43 0.075-0.293y°  57.47-20.96 .  4.83  5.91
4 8126 16.43 0.077-0.235 y°  60.4-20.694 f,2 6.8  8.24
5 8.845 16.43  0.086-0.201 y°  56.99-28.96 f,°  6.67  8.93

6 9.51 18.65 0.101-0.179 y2  55.4-12.085 f2 2718 6.75
7 10131 18.65  0.122-0.163y°  56.95-12.20 f2  2.81  7.31
g8 10.717 18.65 0.131-0.153y°  49-97-11.50 f,2  2.66  7.53
9 1.2;2 23.17  0.122-0.149 y°  63.46-29.33 £ 2 6.75  16.73

10 11.801 23.17 0.108-0.147 y?  53.45-26.66 fZ 614  16.67
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Table 3.7. ‘Data of March 11, 1982, Run 2; Trans. Elevation = 2.5°, Rec.

Elevation = 1°; Resolution = 0.2 microseconds

T?sz zT(Km) V(m/s) Ln P(fd) 10 Tog P(fd) Bj Aj

1 5.412 12.18 0.053-0.97 y2 49.02-41.83 fd2 9.63 2.94
2 6.447 12.18 0.07-0.421 y2 55.47-35.28 fd2 8.12 4.59
3 7.335 16.43 0.075-0.293 y2 60.33-39.06 fdz 8.99 8.56
4 8.126 16.43 0.077-0.235 y2 57.24-34.54 fd2 7.94 8.96
5 8.845 16.43 0.086-0.201 y2 58.4-24.126 fdz 5.55 8.05
6 9.51 18.65 0.101-0.179 y2 60.08-21.76 fdz 5.01 9.49
7 10.131 18.65 0.122-0.163 y2 57.97-18.64 fdz 4.29 9.32
8 10.717 18.65 0.131-0.153 y2 56.43-9.280 fdz 2.14 6.59
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Table 3.8. Data of April 6, 1982, Run 1; Trans. Elevation = 2.5°, Rec.
Elevation = 2.0°; Resolution = 0.2 microseconds
T;p zT(Km) V(m/s) Ln P(fd) 10 1og P(fd) Bj AJ.
2 6.447 18.68 0.045-0.648 y2 44.63-45.93 fd2 10.58 8.96
3 7.335 20.87  0.008-0.355 y°  45.34-56.04 f,2  12.99  13.41
4 8.126 20.87 0.045-0.256 y2 56.34-46.34 fdz 10.67  13.57
5 8.845 20.87 0.112-0.208 y2 58.97-41.44 fd2 9.54 14.0
6 9.51 24.42 0.143-0.178 y2 58.43-26.57 fdz 6.11 14.1
7 10.131 24.42  0.162-0.158 y2 57.98-32.25 1"d2 7.43  16.67
.8 10.717 24.42 0.165-0.145 yz 62.68-24.11 fdz 5.55 15.19
9 11.272 24.75 0.165-0.135 y2 57.44-30.4 fdz 7.0 18.29
10 11.801 24.75 0.163-0.1275y2 58.45-32.59 fdz 7.5 19.86
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Table 3.9. Data of April 6, 1982, Run 2; Trans. Elevation = 2.5°, Rec.
Elevation = 2.0°; Resolution = 0.2 mi;rosecc_mds

T;p zT(Km) V(m/s) Ln P(fd) 10 log P(fd) B:j AJ-

2 6.447 18.68 0.045-0.648 y°  53.14-4.77 f,2 1491  10.95
3 7.3 20.87 0.008-0.355 y°  58.56-37.39 f,2  8.61 10.77
4 8.126 20.87 0.085-0.256 y©  60.41-82.72 £° 0.8 12.99
5 8.85 20.87 0.112-0.208 y°  59.33-37.86 f,2 8.2 13.3
6 9.51 20.42 0.143-0.178 y*  60.6-29.297 f,2  6.74  14.8
7 10.131 26.42  0.162-0.158 y°  58.69-25.88 f,°  5.96  14.87
§ 10.717 24.42  0.165-0.145 y°  55.79-19.61 £, 4.51  13.63
9 11.272 24.75 0.165-0.135 y°  52.74-27.16 f0 6.5  17.25

10 11.801 24.75  0.163-0.1275y°  60.61-28.97 f,2  6.67  18.69
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taps, some of the data corresponding to certain tap are missed.

Examining these figures, one notices that data of April 2,

November 20, 1981 and March 11, 1982 exhibit a larger variability than
that of April 6, 1982. A general feature of the data is an increase of
the anisotropy with height (tap number), leveling off at intermediate
heights before it starts to increase again at Targe altitudes.

Figure 3.11 starts with a small value of A near the grazing height

(taps 1, 2) and then levels off‘ from tap 6 to tap 13 before it starts to
increase more rapidly at tap 14. In Figure 3.12, the anisotrspy increases
more rapidly until tap 6 before it levels off. Figure 3.13 exhibits an
increase to tap 3 and then Tevels off. Figure 3.14 is characterized by
high value of anisotropy and less oscillations.

At this point, it is instructive to see the general variation of
the anisotropy with height obtained by other experimentors. The only
information available is that of Birkemeier in his report of 1974 to the
Rome Air Development Center [4]. Figure 3.15 summarizes his results on
the anisotropy variation. He found the values of A from both Tayer
tracks and the zero Doppler signal enhancement over that predicted by
balloon measurements of the refractive index fluctuation (Acnz). The
results show the general trend of increase of A with height starting
with a nearly isotropic, A = 1, near grazing and increasing to about
A = 6 before it levels off with increasing height. It should be noticed
that the values of A shown in Figure 3.15a are average values for each
tap. Values of A up to 30 in each tap were reported. This feature of

variation of A exists in our data, which indicates that our model gives
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a reasonable estimate of A.

Another aspect that gives a clue about the variation of the
anisotropy with height is its relation to atmospheric stability. A
suggested relation between the anisotropy and the stability measured by
Birkemeier [4] is A = 1og]0Ri, where R, is Richardson's number for
determining atmospheric stability. Values of Ri < 0 indicate turbulence
and the scattering is considered to be isotropic, i.e. A = 1.

Ri > 0.25 indicates high stability. A general feature of atmospheric
stability is its increase with height and a corresponding increase of A
will follow the same trend. This is clear in Figure 3.15b.

Our data are supported by the above-mentioned 1itérature, excépt for
the sudden increase in the anisotropy coeffiéient at higher altitude.
This is believed to correspond to the tropopause height at which'a high

degree of stability will result in higher values of the anisotropy

coefficient.
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IV. THE EFFECT OF ANISOTROPY ON THE DELAY
POWER SPECTRA AND MULTIPATH SPREAD
OF TROPOSCATTER SIGNALS
A. Introduction

The shape of the delay power spectra of signals received on scatter
communication links plays a very important role in the performance of
these 1inks. ée]io and Ehrman [7] have shown that the multipath spread
(A) is a basic parameter that affects the irreducible BER produced by
frequency selective fading. However , Bello's model is:based on average
isotropic atmospheric conditions. Several studies [20, 21] to improve
the ability of Bello's model to accurately predict the delay power
spectrum of troposcatter 1inks of different characteristics have been
. reported. It is believed that the delay power spectra could not only
vary from one 1ink to anothef depending on the path geometry and the
antenna beam width, but also could vary on the same 1ink depending on
the state of the atmosphere.

In this chapter, the more realistic description of scattering in
terms of theé anisptropic model presented in the previous chapter is
utilized in the calculations of the delay power spectra. Several
ﬁrofiles of the anisotropy coefficient are used and their corresponding
specfra are shown. The main effect of the delay spectra on received
signals appears in the form of intermodulation distortion. Several
studies on this phenomenon have been reported [6, 22, 23], among which
we utilize the one reported by Bello and Nélin [6] because it is more
general and more complete. Intermodulation distortion results in an

irreducible error in digital troposcatter transmission [7].
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Section B describes the calculations used to find the delay power
‘spectra based on an anisotropic scattering model. Section C shows
several theoretical anisotrcpy profiles which are used to demonstrate
the effect.of anisotropy on the delay power spectra. The probability
density function of the intermodulation distortion and its sensitivity to
the anisotropy profiles together with the irreducible error probabilities
are also shown in Section C. Section D presents the experimental results
for the measurements of the multipath spread and compares them with
calculations based on the anisotropic model.

B. The Description and Calculations of Delay Power Spectra
Based on an Anisotropic Model

In 1969, Bello introduced a more physical characterization of the
troposcatter channel in the time domain and presented the concept of
"the delay power spectrum which represents the average path gain as a
function of multipath delay. On a short time basis, the troposcatter
channel is regarded as a continuum of statistically stationary,
independently fading paths, each providing complex Gaussian signal
fluctuations. The resulting envelope of the received carrier has a
Rayleigh fading characteristic.

The troposcatter channel suffers what is known as frequency
selective fading which means that at any time instant, the amplitude and
phase of the transfer function vary in a random fashion along the
frequency axis. An approximately constant amplitude and linear phase
can only be observed over a sufficiently small frequency interval. The

fading is highly correlated in this case, whereas for sufficiently
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separated frequencies, the fading is highly uncorrelated. This

frequency selective behavior is usually described by the frequency
correlation function, which is the cross correlation between two received
carriers as a function of their frequency separation.

While the frequency selective behavior could be described by the
frequency correlaticn function, the delay power spectra gives a more
physical characterization. In order to gain insight into the delay power
spectra and its relation to the input and output processes, a brief
deséription of the delay power spectra, following Bello and Nelin [6] will
be in order. Their treatment is based on the following assﬁmﬁtidﬁs:

1. The amounts of frequency selective fading is small.

2. The scattering channel is wide sense stationary uncorrelated

(WSSUS) with Gaussian statistics.

3. Additive noise effects can be ignored in computing

intermodulation distortion noise.

The relation between the output and the input is given by

W(t) = [Z(t - €) glt, &) d& (4.1)

where g(t, &) = a time varyina imoulse response,

a(t, g)dt = the gain associated with path delays in the
interval (g, £ + d&), and

Z(t), W(t) = the complex envelopes of the input and output,
respectively; the actual input and output are
Re{Z(t) exp (ianct} and Re{w(t) exp (ianct}

where fc is the carrier frequency.

The uncorrelated scattering assumption (2) implies



65

9*(13, a?(t + T, mn) = Q(Ta E) 6(7] - g) ( 4.2 )

where §(n - &) is a unit impulse, and Q(t, &) is the autocorrelation
function of the gain fluctuations for path delays in the interval

(8, g+#d&). It is called the path gain autocorrelation function. Under
the slow fading conditions, g(t, &) is practically constant over the

duration of several pulses, and Equations 4.1 and 4.2 could be written as
W(t) = [ 2(t, &) g(&)dt ( 4.3)

g*(&) g(n) = Q(g) &(n - &) ( 4.4)

where g(&) is the channel impulse response at the time the series of
-pulses are transmitted. Q(Z) is proportional to the strength of the gain
fluctuations for path delays in the interval (&, £ + d&). The function
Q(g) is called the delay power density spectrum. The frequency

correlation function q(Q) and Q(&) are Fourier transform pairs [24], i.e.
Q(g) = [ a(e) exp (i2mE)do (4.5)

a() = [ Q(g) exp (i2mg)de (4.6)

The shape of the function Q(£) plays an important role in the study of
intermodulation distortion and the bit error rate for digital

troposcatter transmission.

1. Bello's model for calculating the delay power spectra -

Bello [5] introduced a single integral troposcatter channel model

to calculate the received power as a function of the path delay. As
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mentioned in Chapter II, paths of constant time delay correspond to
prolate spheroids with foci at the transmitter and receiver. Starting
from Equation 2.1 in its differential form, which is repeated here for

convenience,

‘ , GtGr
dP . = Q(&)dg ~ o(e)dv ( 4.7)
r R ZR 2
172
and using the Booker-Gordon blob scattering theory for which the three-

dimensional spectral density of the refractive index fluctuation of

Equation 2.16, o(0) is written as

~ 1
Q) T —— 4.8
a(e) 5 | ( )

where m is the scattering angle exponent and h is the height of the
scattering blob above the chord joining the transmitter and the receiver,

Bello developed the following general integral for Q(£):

v28/¢, Gt("‘}2_‘5"?0)Gr(’{iz - %)

o8) = —— dx (4.9 )
s(1+m/2) ¥, /28 x(x + %)m-Z
Where YO and ¢° = the elevation angles of the horizon at the
transmitter and the receiver, respectively,
8§ = %-E - 1 = a normalized delay parameter, C is the velocity

of light and D is the straight 1ine distance
between the transmitter and the receiver, and

the vertical antenna patterns of the transmitter
and the receiver (refer to Figure 2.1).

Gt( ) and Gr( )
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It should be noted that in the integral of Equation 4.9, the
antenna elevations are adjusted to have maxiimum gain at Wo and ¢°, which
is not necessarily the general situation. Sometimes it is advantageous
to clear the total half power beam width above the horizon, in which
case wo and ¢° in thé integration 1imit are understood to be the horizon.
elevations and ?o and ¢0 in the gain formulas are understood to be the
elevations of the center beams.

Bello used a value of m=5, which did not accurately predict the
delay power spectra for short troposcatter paths. His model was Tater
modified by Daniel and Reinman [20], and by Pusone and Hoag [21] who
developed a delay power model based on the physics of the géses in the

troposphere together with mean meteorological measurments.

2. Delay power spectra based on an anisotropic model

The model presented in the previous section for calculating the delay
power spectra represents the power actually received at zero Doppler
frequency in the Doppler delay plane of the scattering function
representation of the forward scatter power. The difference between the
zero Doppler power and the total power for a specific delay was shown
by Birkemeier [4] to be very slight. Thus, the zero Doppler power as a
function of the delay represents a very good estimate for the delay power
spectrum. In addition, it is relatively easy to measure experimentally
using a RAKE receiver. It was shown in the previous chapter that the
received Doppler power for a delay tap j is given by Equation 3.18.

The equation is repeated here for convenience as Equation 4.10.
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a2 1049 1.506 2 2
J T

For zero Doppler conditions, Equation 4.10 reduces to
P.(0) = A;%C;; . ( 4.1 )
Jd Jd 1J )

The index j refers to the delay tap and CIj represents the received zero
Doppler power under isotropic conditions.

Two important facts can be deduced from Equation 4.11. First, the
zero Doppler power increases above that predicted under isotropic
conditions as the square of the anisotropy coefficient. Second, the
delay power spectra is seen to be a function of the variation of the
anisotropy with the multipath delay; or in other words, with the
anisotropy profile.

Incorporating Equation 4.11 into Bello's integral for the delay
power spectra given by Equation 4.9 and using the well-accepted -11/3
spectrum of the refractive index fluctuations for average isotropic
scattering conditions, the anisotropic versiqn of the delay power

spectrum becomes:

2 V)6, G (%35 - ¥ )6.(¥25 - 4
(&) '=A17£% I o Gl o) r;/>3( o)dx ( 4.12 )
s 1
?0//2_6 x(x + )

where the anisotropy coefficient A is written in terms of the delay.
A computeriprogram shown in Appendix C has been developed to
numerically evaluate the integral in Equation 4.12 as a function of the

delay. The program has as its inputs, the anisotropy profile, the path
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length, and the antenna half power beam width. Gaussian antenna
patterns are assumed. The program was verified by recalculating the
delay power spectra of previously calculated exampies from the
literature [5]. This program is also used to process the ISU-UW 1ink
data.
C. Anisotropy Profiles and Their Effect on the
Delay Power Spectrum
The general behavior of the anisotropy profiles is discussed in
Chapter III. It is shown that the general trend of the profile of the
averagé anisotropy coefficient A with height (or delay) is an increase
starting with a value of nearly 1 near the grazing ray height and
leveling off at higher elevations. Thus, a profile that is a smoothly
varying function of height will be used in showing the order of
magnitude of the corresponding variation in the delay power spectra. The
profiles used are: 1) a linear increase of A with delay; 2) an
exponential increase of A with delay; 3) a one path model to represent
elevated layers; and 4) a two-path model. Before presenting these
fésu]ts, some measures of the shapes of the delay power spectra which
are useful for comparison purposes and which are important parameters in
the study of intermodulation distortion will be considered. It is

convenient to normalize Q(£) so that

Jag)de =1. (8.13)

With this normalization, Q(g) has all the attributes of a probability

density function [6].
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The mean path delay, go, and the multipath spread, A, are then

defined as follows:
&, = | EQ(g)de (4.74)
a=[ [ e2ae + £,)ae1"/2 . ( 4.15)

Sometimes a double-sided definition of A which is twice the value given
by Equation 4.15 is used [25, 21]. In our study, the single-sided
definition given by Equation 4.15 will be utilized. Two other moments

are usually defined as:

ug = [ £20(E + £,)dE ( 4.16)
and

w = [ el + g ) . (4.17)

The ratio 33 = u3/A3 and 34 = u4/u4 are used in statistics as a measure
of "asymmetry" and "flatness of peak" and are called the Skewness and

the Excess, respectively.

1. Linear increase of anisotropy with delay

Starting with a simple case, the linear dependence of A on the

delay takes the following form:

A(g) =1+ Sg (4.18)

1

where S is the slope and has dimension of sec '. It should be noted

that zero delay is chosen to correspond to the grazing ray at which
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point the scattering is assumed to be isotropic (A = 1). Based on

Birkemeier's data [4], S could range from 0 to 32 sec'].

2. Exponential increase of anisotropy with delay

An anisotropy coefficient model that has the property of leveling
off at higher delays, yet maintains the increasing behavior with delay,

is the following exponential:
A(g) = 1 +a(l - exp(-bg)) ( 4.19)

wheré a and b are constants to be determined. In our case, the

constant a is chosen to represent typical estimated values of anisotropy.
Values of a of 7, 16, and 25 are used to represent typical, high, and
very high values of the anisotropy. The determination of the constant b
is based on a least square estimate for the experimentally obtained

values of the anisotropy shown in Chapter III. Values of b of 1 and 0.5

are used.

3. One elevated layer

This sifuation'is of practical importance since very often signals
received via tropospheric scattering are dominated by a constant
component plus a randomly scattered component. This situation is an
indication of a layer [26], that reflects signals instead of scattering
them. In the case of a layer, the correlation distance of the refractive
indei in the horizontal direction is much larger than the vertical
correlation distance; and it is nearly constant. Thus, a layer could be

represented by an anisotropic scattering model having a constant value
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of the anisotropy coefficient A (A = 1x/1z). The effect of a layer

on the delay power spectra is represented by the following equation:
A(g) = 1 +clu(g -(g, - A/2)) - U(g -(g, + 8/2))] ( 4.20 )

.where C is a constant and U( ) is the unit step function. The layer is
chosen to be at a height corresponding to the mean delay and of width

equal to the multipath spread A.

4. Two-layer model

Situations in propagation exist in which the atmosphere has one
elevated layer and another near the surface. It also represents two-
path propagation found in experimental results [27]. Thus, this
situation can be considered from the anisotropic model point of view.

The anisotropy coefficient is taken to vary with delay in the following

form:
[ C & - §%_< E<& "%
A(E) = 4 C§O+%<£<£o+3—ﬁ (4.21)
. 1 otherwise

where the two layers are assumed to have equal anisotropy coefficient C.
The delay power spectra of the previously mentioned anisotropic
situations have been calculated and the results are shown in Figures 4.1,

4.2, and 4.3. Table 4.1 summarizes the different characteristics of

each spectrum. The isotropic spectrum is graphed on each figure to
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Table 4.1.

Summary of the delay power

characteristics for the presented anisotropy profiles

Anisotropy

Form

Mean delay Multipath Skew Excess
variation in us spread
_ us
Isotropic A=1 0.317 0.247 1.756 7.836
A = 143§ 0.536 0.370 1.324 5.22
Linear A = 1+8¢ 0.631 0.391 1.168 4.616
A = 1+12¢ 0.657 0.395 1.137 4.5
A= l+7(1-exp(-§)g 0.516 0.327 1.293 5.37
Exponential A= 1+16§1-exp -£)) 0.560 0.334 1.244 5.17
A = 1425(1-exp(-0.5&)) 0.595 0.358 1.203 4.9
584" %’<€<Eo ¥ %
One layer A = 0.304 0.101 2.666 27.475
1 otherwise
r 32 A
S:80 4~ Bk - 7
- A 3A ’
Two layers A= ﬁ 5,E,t H’<E<go + T 0.277 0.140 1.417 8.836

_ 1 otherwise

9L
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serve as a reference. These spectra are calculated using the parameters
of the ISU-UW troposcatter Tink.

The main features of the spectra of the linear variation of
anisotropy are shown in Figure 3.1, where it is seen that the multipath
spread increases significantly with anisotropy. A slight (S=3) linear
increase in anisotropy will bring about a 50% increase in multipath
spread parameter, larger increases (s=8 to s=12) in anisotropy will bring
up to a 60% increase in multipath spread. It should be noted that any
further increase will not produce a significant change in spread. This
is clear from Figure 4.1. The exponential variation of anisotropy
produces an increase in multipath spread, which is less than the linear
case. A 32% up to a 45% increase in multipath spread could result from
changing a smaller (a=7, b=1) exponential increase in anisotropy to
Jarger one (a=25, b=0.5). The situation is different for the single
layer where the multipath spread decreases by 59%. The two-layer case
results in 43% decrease in multipath spread. The result for the one-
Tayer case is intuitively plausible since received energy is no longer
spread over the whole delay range, rather it is coﬁcentrated in one
delay interval.

The mean delay is also greatly affected by the anisotropy change.
For the use of a linear increase of anisotropy, the mean delay
increases from about 69% for a smaller increase in anisotropy to 99% and
up to 107% for a larger increase. For the exponential anisotropy
variation, the increase in the mean delay is smaller, ranging from about

63% to 77% and up to 88% for smaller, medium and large increases of
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anisotropy. The situation is different for the one-layer case where
the mean delay is reduced very slightly by about 3%. For the two-layer
case, a decrease by about 13% could occur. It is clear that the linear
anisotropy increase has the most impact on the mean delay and on the
multipath spread; however, the mean delay will actually depend on the
height of the layer. It should be emphasized here that the numbers
obtained are based on the profiles presented which could vary from one
Tink to another.

D. The Effect of Anisotropy on Intermodulation Distortion

and Error Probability of Binary Communication Systems

In communication systems, when the signal level is small due to
severe fading, thermal noise becomes a 1imiting factor in the performance
.of the system. On the other hand, when the signal level is high, the
nonlinear noise (or intermodulation noise) becomes the 1imiting factor.
In the frequency modulation systems widely used in tropospheric scatter
links, the main causes of the intermodulation are: 1) transmitter
nonlinearity; 2) multipathing in the medium; and 3) receiver
" nonlinearity. A great deal of effort has been devoted to the study of
this'phenomena [7, 21, 27, 28]. This study is concerned with the impact of
the transmission medium (the troposphere) on the received signals. As
shown in the previous section, the atmospheric anisotropy has a
significant effect on the multipath spread and consequently, will have

the same effect on intermodulation distortion.
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1. Intermodulation distortion

The intermodulation theory developed by Bello et al.’[6, 7] will be
utilized here since it is more general and more complete. Although it
is limited to cases- exhibiting small frequency selective fading, this
restriction does not 1imit its applicability to troposcatter systems
sfnce Targe amounts of frequency selectivity are unacceptable.
Intermodulation is usually characterized by its power in a narrow band

located at a certain baseband frequency f and is given by [6]:
I(f, t) = A%, - (Fv(t) ( 2.22)

where x(t) is the modulating signal, x°(t) its time derivative,

Pxx-(f) is the power spectrum of the product x(t)x°(t), and Y(t) is
called the normalized intermodulation distortion power. A quantity of
importance in practical applications is the ratio of the intermodulation
distortion power to signal power in a narrow band at a specified baseband

frequency. This can be expressed as follows [7]:

(f
A R L Pril 1) 2 . ' ( 4.23 )
P(f) P (D)

If x(t) is a Gaussian process with a flat power spectrum extending
from all to W and zero elsewhere, the value of n(f, t) at the top of the

baseband (f=§) is given by [6]:

2.2
n(W, t) = y(t) (2ma)* 94l (:‘ﬁ) ( 4.24.)
-a

where o is the rms value of x(t).
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The time dependent part of Y(t) in Equation 4.23 is described in
terms of its probability density functions of all orders. Considering
the case of no diversity, a first order probability density function

for v, W(Y) could be written as [6]:

W) = —— 7 R  4.25
o L JER) (1 + R + 4%?7)2 ( :

where

f(R)=R2»+Z—§+-}1—(Z—Z-T) ( 4.26)

and A, ug and Uy are defined by Equations 4.15, 4.16, and 4.17.
| Equation 4.25 is a function of the delay power spectrum parameters

whicﬁ are highly dependent on the atmospheric anisotropy profiles. No
exact closed form for W(y) has been found, so a numerical integration is
usually used for these calculations. Practical values of Y are large,
i.e. > 10, and for a 10 dB signal-to-noise ratio, the value of Y is 104.
Thus, an approximate formula for W(Y) can be used. For the nondiversity
case, the following formula from reference 7 can be used.

uy) = 15 v > 10 ( 4.27)

Y

ueyy = &0 y << 1 ( 4.28)

A computer program to numerically evaluate W(y) in Equation 4.25
for the ISU-UW 1ink has been written for the delay power spectra
presented in Table 4.1. The probability density functions and the
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cumulative distribution functions are shown in Figures 4.4 and 4.5 for
the isotropic linear and exponential anisotropy profiles. It is clear
from the figures that the probability density function of the normé]ized
intermodulation is practically unaffected by the different anisotropy
profiles. The general shape of W(Y) is characterized by a steep

increase for Y < 1 while for vy > 1, it decreases more rapidly.

2. Effect of anisotropy on the error rate of a binary communication
system

In a binary communication system, one of two signals, so(t) or s](t),

is received in the time interval (o < t < T). The received signal is
corrupted by both the medium through which it propagates and the
unavoidable noise at the receiver. The medium manifests itself by
producing intermodulation, while the noise will result in an uncertainty
of the received signal. Both will result in errors in deciding whether
the received signal is so(t) or 51(t). The performance of digital
comunication systems is usually expressed by curves representing the
probability of error versus a characteristic parameter of the receiver;
for example, signal-to-noise ratio. The noise is usually assumed to be
Gaussian with zero mean. The error performance due to the receiver noise
can be found in many texts. This study will use the development in

reference [29] where the error probability is given by:

o e 172
Po= [ L exp (-%/2)az = 1 Erfe [%-NE-E] ( 4.29)
™ . 0o
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where E is the aQerage energy and is given by

.
E = %—j‘o' [s,2(t) + 5;%(t) 1ot

p is the correlation coefficient between so(t) and s](t);
1 .
PTE j so(t)‘s](t)dt, and NO/Z is the two-sided noise spectral density.
o -

E/No is the signal-to-noise ratio.

The error probability decreases as ('l--p)E/No increases and for
fixed E/No, the optimum system is that for which p = -1. Figure 4.6
Shows the error performance of three binary communication systems of
practicé] use. The curve corresponding to p = -1 is for coherent phase
shift keying (CPSK), which is the optimum binary system. ~The curve
~ corresponding to p = 0 is for coherent frequency shift keying (CFSK) and
ON-OFF carrier keying. For a given error probability, a 3-db increase

in signal-to-noise ratio results when using CPSK instead of CFSK or
ON-OFF carrier.

The error resuiting from intermodulation distortion can be estimated
for the binary communication systems by using Equation 4.29 and the
proper definition of the signal-to-noise ratio, E/No. Averaging this

“error probability over the probability density function of the
intermodulation distortion given by Equation 4.25, results in an

expression for the error performance of PSK systems.

Pa(s) = % Erfe(s) /2 | (4.30 )
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and for FSK
Po(s) = 3 Erfec (5)'/2 ( 4.31)

where s = E/No, the signal-to-noise ratio.

For the intermodulation distrotion, the‘signa]-to-noise ratio, s,
is equal to 1/n(f) in Equation 4.23 where n(f) denotes the ratio of the
intermodulation distortion bower to signal power in a narrow frequency
band located at some specified baseband frequency. The average error
probability is given by:
P, =] & Erfc /T7Zn U(Y)dr . (4.32)

o

As shown in thé previous sectjon, W(y) is essentially independent of
the anisotropy profiles, thus, the only parameter that affects the

error rate is the multipath spread parameter implied through n. A

normalized parameter is often used instead of n and is given by [7]:

n= gy ( 4.33)
4 Pxx(f)

where g = A
P.(f)

Thus, on a given troposcatter link, anisotropy will result in a change
in the multipath spread parameter, A. Equation 4.32 is numerically
evaluated by means of computer program written for this purpose for
the anisotropy conditions shown in Table 4.1. The approximate form of
Equation 4.27 is used in these calculations since the practical range

of A is >10. Figure 4.7 shows the effect of the anisotropy change on
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the irreducible error probability for isotropic, linear, and exponential
anisotropy profiles. It is found that anisotropy will tend to increase
the error probability by an order of magnitude or more. For a given
error probability, about a 6dB increase in intermodulation distortion
due to aA]inear increase (5=12) in anisotropy will result. The error
probability of intermodulation distortion is found by estimating the
mul tipath spread parameter A for the isotropic case from Figure 4.7,
then the anisotropy profile is determined, the change in g value is
found, and the new value of the error probability is found. The total
error probability of a binary communication system is approximated by
the sum of the probabilities due to the Gaussian noise and the

intermodulation distortion.

E. Measurements of the Multipath Characteristics

In addition to its sounding capability, the RAKE system is also
useful in measuring the multipath characteristics since delay tap spectra
can be processed to find the total power for each delay. It was
‘mentioned earlier that there is Tlittle difference between the zero
Doppler power and the total power; so the zero Doppler power‘is a very
good estimate of the total power for a given delay. The delay power
spectra taken from the ISU-UW 1ink for April 2, November 20, 1981,
March 11, April 6, 1982 are shown in Figures 4.8 through 4.11,
respectively. These are presented to demonstrate the nature of
variations of the multipath characteristics that can exist on a
troposcatter 1link. The multipath characteristics for the above-mentioned

dates are theoretically calculated based on isotropic scattering
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conditions according to the -11/3 spectrum using Equation 4.9.

Table 4.2 summarizes the mean delay and multipath spread parameters for
the measured data and calculations based on isotropic scattering
conditions for the above-mentioned dates.

Looking at Table 4.2, it is apparent that the measured mean delay
of April 2, November, 20, 1981 and April 6, 1982 are larger than those
theoretically calculated based on isotropic conditions; while for that
of March 11, 1982, the measured mean delay is less than the calculated
one. The multipath spread parameter shows measured values that are
less than the theoretically calculated ones for the day of March 11 and
April 6, 1982. The measured and calculated values are in close agreement
for the April 2, 1981 data. The day of November 20, 1981 shows an
increased measured value relative to the theoretically caléulated one.

At this point, it is useful to mention the expected variations
between the measured and calculated values of the multipath parameters.
The anisotropic model was presented in Chapter III, together with the
t&pica] behavior of the anisotropy coefficient, which tends to increase
with delay, then levels off. According to the data of the variation
of the anisotropy coefficient with height (or tap number) shown in
Figures 3.10 through 3.13 for the previously mentioned dates, we expect
fhat the measured value should be larger than the calculated values
based on isotropic scattering. It was mentioned earlier that the
increase in the anisotropy coefficient with delay tends to increase both

the multipath spread and the mean delay parameters.



Table 4.2. Comparison between the measured and calculated mean delay and multipath spread
parameter

April 2, 1981 Nov. 20, 1981 March 11, 1982 April 6, 1982
o A o A € A & A
nusec usec usec - usec usec usec
Measured 0.69 0.33 0.76 - 0.51. 0.83 0.38 1.1 0.38
Calculated,
based on the 0.461 0.349 0.461 0.349 1.02 0.581 0.831 0.521
-11/3 spectrum
Linear :
anisotropy -a -2 0.611  0.438 .a -a -a -a
model

143

AThe anisotropic model is not used for this situation.



95

Thé data reported in Table 4.2 show only one day, November 20, 1981,
that has the above-mentioned characteristics of increased measured value
relative to the theoretically calculated ones. The measured values
exhibit increases of 40% and 32% (the percentage is with respect to the
measured value) in the mean delay and multipath spread, respectively.
The anisotropic model is introduced in the calculations to account for
this increase. A linear least square fit to the data of November 20,
1981, is done and the resulting anisotropy profile is inserted
into the calculations of the delay power spectra. The result
is shown in Table 4.2 for that day. The difference between the measured
and calculated value is now smaller. It is 19% and 14% for the mean
delay and the spread parameter, respectively, which is an improvement
in the proper direction. This situation indicates that the
anisotropic model could indeed account for this type of difference
between the measured and calculated delay power spectra characteristics.

The anamalies reported in the remaining dates of April 2, 1981
and March 11, April 6, 1982 could be attributed to a number of sources.
The first source is that the values of the anisotropy coefficient
shown in Figures 3.10 through 3.13 are indeed considered to be
instantaneous values where the data from one tap are taken over a short
period (about one minute) and this, which could result in values of the
anisotropy coefficient having the characteristic variation of the
anisotropy with height (or delay), does not in fact give an absolute
value of the anisotropy coefficient. In order to get good estimates for

the anisotropy coefficient, an average over longer time periods is
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required, which means more data is still required to give a typical
anisofropy variation with height for the specific 1ink. The second
source that could account for the anomalies is the high sensitivity
of the delay power spectra calculations on the elevation angles of both
the fransmitter and receiver. Also, the delay power spectra are very
sensitive to Variations in the half power beam width. A half power
beam width of 2.6° was used in these calculations. However, there is
some evidence to indicate that the half power beam width of the
transmitting antenna is somewhat less than that. Accurate measurements
of the true elevation angles of the antennas used in the ISU-UW °
troposcatter 1ink have not been accomplished. Another source of error
-is the use of a forecasted wind instead of the actual cross path wind
which needs to be used in extracting the anisotropy coefficient.

In spite of the faqt that the experimental data are somewhat
| Timited, this study shows that the measurements of the anisotropy of
the atmosphere can be made. The results of trying to relate the
experimental measurements of the anisotropy profiles to the multipath
parameters indicate‘that more information on the physical parameters of

the troposcatter 1ink are needed. The results are encouraging, however.
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V. CONCLUSION

This dissertation has dealt with atmospheric anisotropy and its
effect on the delay power spectra of the troposcatter communication 1inks.
Not enough information about the atmospheric anisotropy exists in the
Titerature, and even direct measurements for the atmospheric anisotropy
have not been attempted. This is due to difficulties in measuring
small scale three-dimensional refractivity fluctuations simultaneously in
time and space. A simplified model has been presented to estimate the
- atmospheric anisotropy coefficient indirectly by processing the Doppler

spectrum for each tap dejay. This has been shown to be a good
approximation to the anisotropic scattering model based on turbulence
induced fluctuations in the refractive index of the atmosphere. The
model offers definite advantages for extracting the anisotropy coefficient.
One advantage is that the anisotropy coefficient can be evaluated using
'data'from a single time delay shell. The anisotropy coefficient
determined by this process is an average taken over the scattering volume
of the time delay shell. The second advantage 1ies in the relative ease
of implementing the inversion process. The Doppler spectrum of the
received signal is fit to the Gaussian shaped scattering model. This
process can be accomplished by linear regression done on a digital
computer.

Having determined the anisotropy coefficient for each time delay
shell, the impact of the anisotropy on the troposcatter channel as a
communication link is studied. Bello's model for the troposcatter

channel is modified to include the effect of the anisotropy on the delay
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power spectra ofjthe troposcatter signals. It has been found that the
anisotropy will result in increased multipath spread and mean delay
paraméters relative to those resulting from isotropic scattering
Different theoretical anisotropy profiles based on the general
experimentally observed changes in the anisotropy coefficient with delay
are used in this study. The different characteristics of the delay
power spectra are calculated for each anisotropy profile. The effect of
anisotropy on the probabi]ity density function of the intermodulation
distortion has been shown to be very slight. However, its effect on
binary communication systems is to increase the bit error rate by an
order of magnitude or more.

This study could be extended for future work in two areas. The
first area is that of improying the characterization of the atmospheric
anisotropy by extending the anisotropic model to be applicable to wider
varieties of atmospheric conditions. More carefully planned measurements
are still needed in this field. The model presented for determining the
anisotropy depends on the accuracy of the wind measurements at the common
volume. In our calculations, a forecasted wind aloft near midpath is
used. These are estimated values and are of questionable accuracy. Also,
the weather service estimates are given at a few discrete heights, so the
coverage is incomplete. In fact, this problem arises whenever one
attempts to use Doppler frequency information to determine the anisotropy

‘coefficient and is independent of the scattering model employed in the

process.
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The second possible area that needs more investigation'is the
accuracy of Bello's model to accurately predict the delay power spectra
of short troposcatter 1inks and their frequency correlation functions.
Daniel and Reinman [20] presented a modification to Bello's model by
correlating the exponent of the scattering angle with the path length.
This, of course, is not based on a physical model of scattering. Pusone
and Hoag [21] also introduced a troposcatter channel model which is
based on meteorological measurments. Their model predicts results closer
to the measured values of the frequency correlation function. We
believe that by considering the scattering process to be described by an
anisotropic scattering model and its characteristic increase with height,
the reduction in the correlation bandwidth which has been reported

experimentally can be accounted for.
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VIII. APPENDIX A: PARAMETERS OF THE ISU-UW
TROPOSCATTER LINK

Table 8.1 summarizes the important characteristics of the ISU-UW

tropospheric scatter radio Tink.

PR

" Table 8.1. Summary of the characteristics of the ISU-UW forward
scatter radar

Parameter Value or location
Transmitter location ISU Fick-Observatory, Moingona, IA
Receiver location UW Agricultural Farm, Arlington, WI
Transmitter power 10 kw (cw)
Carrier frequency 940 MHz
Bandwidth 10 MHz
Transmitting antenna 8.53 m paraboloid
Receiving antenna 8.53 m paraboloid
Antenna half-power |
beamwidth 2.6°
Receiver noise figure 6dB
Distance 406 Km
Basic path loss 156 dB
Minimum propagation time
from trans. to rec. 1.354 ms
Modulation pseudorandom binary code 2]6/bits per code

word at a bit rate of 107 bits/sec
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Figure 8.1. Geometry for height delay relations at midpath

The height-delay relations can be deduced from the geometry of
Figure 8.1. The time delay is usually taken relative to the grazing
ray. Let L denote the path length and h the height at midpath. L and
h are the corresponding values at the horizon (grazing ray). The

following relations can be written:

L-L =cat ,L=1L_+cAt 8.1
G G
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L = 2(n? + x 2)1/? 8.2
0= érc tan (d/Re) 8.3
LG = 2Re tan © 8.4
 xc = Re sin 0O. : 8.5

From Equations 8.1 and 8.2, one can write

L, + cAt 2
G
h = [(=e—) - x212 . 8.6
Substituting for Lg and Xc in terms of © and Re’ and putting ¢ = 0.3 Km/us
results in
2 2 1/2
h= [(Re tan © + 0.15 At)” - (Resin 0)<] 8.7

In Equation 8.7, when At is in microseconds and Re is in Km, h will
be in Km. Equation 8.7 is used to calculate the midpath height
corresponding to the different delays. Figure 8.2 shows a cross section
at midpath depicting the different delay shells and their relative height
for 0.2 ps resolution. Tables 8.2 and 8.3 list the shell height for
0.1 and 0.2 microseconds delays. The mid-shell height is usually used
in our calculations. Tables 8.2 and 8.3 1ist distances from the chord
and from the surface, as well as the shell thickness.

The Doppler frequency, given by Equation 2.27, can be written for
the ISU-UW 1ink as

£, % - 0.031 vy . 8.8
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Table 8.2. Delay heights (in Km) for 0.1 us resolution
Tap Time Mid height Mid height Shell
# delay " IMC MS thickness
1 0.1000 5.1450 2.7192 0.5929
2 0.2000 5.7082 3.2824 0.5334
3 0.3000 6.2198 3.7940 0.4899
4 0.4000 6.6924 4.2666 0.4553
5 0.5d00 7.1336 4.7078 0.4271
6 0.6000 7.5488 5.1230 0.4034
7 0.7000 7.9423 5.5165 0.3836
8 0.8000 8.3174 5.8916 0.3666
9 0.9000 8.6763 6.2505 0.3512
10 1.0000 9.0207 6.5950 0.3378
11 1.1000 9.3526 6.9268 0.3260
12 1.2000 9.6731 7.2473 0.3150
13 7.3000 9.9833 7.5575 0.3054
14 1.4000 10.2842 7.8584 0.2965
15 1.5000 10.5766 8.1508 0.2883
16 1.6000 10.8611 8.4353 0.280?
17 1.7000 11.1383 8.7125 0.2737
18 1.8000 11.4088 8.9830 0.2672
19 1.9000 11.6730 9.2473 0.2614
20 2.0000 11.9315 9.5057 0.2555
21 2.1000 12.1844 9.7587 0.2504
22 2.2000 12.4323 10.0066 0.2454
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Table 8.2. Continued

Tap Time Mid height Mid height Shell
# delay ZMC ZﬂS thickness
23 2.3000 12.6753 10.2495 0.2405
24 2.4000 12.9137 . 10.4879 0.2362
25 2.5000 13.1479 10.7221 0.2322
26 2.6000 13.3780 10.9522 0.2280
27 2.7000 13.6042 1.1784 0.2243
28 2.8000 13.8268 11.4010 0.2209
29 2.9000 14.0459 11.6201 0.2173
30 3.0000 14.2615 11.8357 0.2139
31 3.1000 14.4739 12.0481 0.2109
32 3.2000 14.6833 12.2576 0.2079
33 3.3000 14.8898 12.4640 0.2050
34 3.4000 15.0034 12.6677 0.2023
35 3.5000 15.2944 12.8686 0.1996
36 3.6000 15.4928 13.0670 0.1972
37 3.7000 15.6886 13.2628 0.1946
38 3.8000 15.8821 13.4563 0.1923
39 3.9000 16.0733 13.6475 0.1900
0 4.0000 16.2621 13.8364 0.1877
41 4.1000 16.4489 14.0231 0.1857
42 4.2000 16.6335 14.2078 0.1837
43 4.3000 16.8163 14.3905 0.1818

44 4.4000 16.9970 14.5712 0.1797
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Table 8.2. Continued

Tap Time Mid height Mid height Shell
# delay ZMC ZMS thickness
45 4.5000 17.1758 14.7500 0.1779
46 4.6000 17.3528 14.9270 0.1761
47 4.7000 17.5280 15.1022 0.1743
48 4.8000 17.7015 15.2757 0.1727
49 4.9000 17.8733 15.4475 0.1710
50 5.0000 18.0435 15.6177 0.1694
51 5.1000 18.2121 15.7864 0.1678
52 5.2000 18.3792 15.9534 0.1663
53 ' 5.3000 18.5448 16.1190 0.1€49
54 5.4000 18.7090 16.2832 0.1634
55 5.5000 18.8717 16.4459 0.1621
56 5.6000 19.0330 16.6073 0.1606
57 5.7000 19.1931 16.7673 0.1596
53 5.8000 - 19.3519 16.9261 0.1580

59 5.9000 19.5092 17.0835 0.1568
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Table 8.3. Delay heights (in Km) for 0.2 us resolution
Tap Time Mid height Mid height Shell
# delay MC ZMS thickness
1 0.2000 5.4117 2.9859 1.1263
2 0.4000 6.4475 4.0217 0.9451
3 0.6000 7.3353 4.9095 0.8305
4 0.8000 8.1256 5.6998 0.7502
5 1.0000 8.8452 6.4194 0.68839
6 1.2000 9.5101 7.0843 0.6410
7 1.4000 10.1315 7.7057 0.6018
8 1.6000 10.7169 8.2911 0.5690
9 1.8000 11.2719 8.8461 0.5410
10 2.0000 11.8008 9.3750 0.5169
11 2.2009 12.3071 9.8814 0.4958
12 2.4000 12.7934 10.3676 0.4768
13 2.6000 13.2620 10.8362 0.4604
14 2.8000 13.7147 11.2889 0.4450
15 3.0000 14.1528 11.7271 0.4313
16 3.2000 14.5779 12.1521 0.4188
17 3.4000 14.9909 12.5651 0.4073
18 3.6000 15.3930 12.9672 0.3968
19 3.8000 15.7848 13.3590 0.3869
20 4.0000 16.1671 13.7413 0.3778
21 4.2000 16.5407 14.1149 0.3694
22 4.4000 16.9061 14.4803 0.3615



112

Table 8.3. Continued ‘

Tap Time Mid height Mid height Shell
7 delay " IMC ZMS_. - thickness
23 4.6000 17.2639 14.8381 0.3540
24 4.8000 17.6143 15.1886 0.3470
25 5.0000 17.9580 15.5322 4 0.3404
26 " 5.2000 18.2954 15.8696 0.3344
27 5.4000 18.6267 16.2009 0.3283
28 5. 6000 18.9522  16.5264 0.3227
29 5.8000 19.2722 16.8464 0.3173
30 6.000 19.5871 17.1613 0.3124
31 6.2000 19.8970 17.4712 0.3074
32 6.4000 20.2021 17.7764 0.3029
33 6.6000 20.5029 18.0771 0.2985
34 6.8000 20.7993 18.3735 0.2943
35 7.0000 21.0916 18.6658 0.2902
36 7.2000 21.3799 18.9541 0.2864
37 7.4000 21.6644 19.2386 0.2826
38 7.6000 21.9452 19.5195 0.2791
39 7.8000 22.2227 19.7969 0.2758
40 8.0000 22.4967 20.0710 0.2724
41 8.2000 22.7675 20.3417 0.2691
82 8.4000 23.0351 20.6093 0.2661
43 8.6000 23.2996 20.8738 0.2630

44 8.8000 23.5612 21.1355 0.2602
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Table 8.3. Continued

Tap Time Mid height Mid height Shell
# delay CIMC . ms thickness
45 9.0000 23.8201 21.3943 0.2574
46 9.2000 24.0761 21.6503 0.2547
47 9.4000 24.3294 21.9037 0.2521
48 9.6000 24.5803 22.1545 0.2496
49 9.8000 24.8286 22.4028 0.2470
50 10.0000 25.0744 22.6486 0.2447

- 51 10.2000 25.3180 22.8922 ' 0.2424
52 10.4000 25.5593 23.1335 0.2402
53 10.6000 25.7983 23.3725 0.2379
54 10.8000 26.0352 23.6094 0.2358
55 11.0000 26.2700 23.8442 0.2337
56 11.2000 26.5027 24.0769 0.2317
57 11.4000 26.7334 24.3076 0.2298
58 11.6000 26.9622 24.5364 0.2278

59 11.8000 27.1891 24.7633 0.2259
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IX. APPENDIX B: WATFIV COMPUTER PROGRAM FOR CALCULATING
THE DISTRIBUTION OF THE DIFFERENTIAL
~ ISOTROPIC SCATTERED POWER VS CROSSPATH
DISTANCE
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SRR
MAIN PROGRAM 71 USED FOR UNEQUAL
ANTENNAS ELEVATION
PURPOSE

THIS,K PROGRAM IS USED 7O CALCULATE THE DISTRIBUTION OF
THE DIFFERENTIAL ISOTROPIC SCATTERED POWER AS A FUNCTION OF
THE CROSSPATH DISTANCE FOR EACH TIME DELAY SHELL IN A
TROPOSPHERIC SCATTER LINK UTILIZING RAKE RECEIVER « THE
PROGRAM APPROXIMATES THE TIME DELAY SHELLS AS A CONFOCAL
CYLINDERS NEAR MIDPATH « ONLY THE POWER CONFINED TO THE 3-DB
BOUNDARIES OF BOTH THE TRANSMITTING AND RECEIVING ANTENNAS
1S CALCULATED.

A CROSS SECTION OF THE 3-DB ANTENNAS PATTERNS IN THE
Y=Z PLANE AT THE MIDPATH CAN BE APPROXIMATED BY A CIRCLE»
WHICH INTERSECTS WITH EACH TIME DELAY SHELL . THE 3-DB
BOUNDAR IES ALONG~-THE=PATH AND CROSSPATH ARE FOUND FOR EACH
TIME DELAY SHELL « AT ANY CROSSPATH DISTANCE +A LINEAR
RELATIONSHIP BETWEEN THE ALONG-~THE=PATH AND CROSSPATH
BOUNDARIES IS ASSUMED . THE SCATTERED POWER AT ANY
CROSSPATH DISTANCE Y IS CALCULATED USING EQUATION 3.22 WITH
ASSUMPTIONS GIVEN IN SECTION III.Ce.1l « THE CLACULATED POWER
IS THEN NORMALIZED TO THE POWER SCATTERED FROM THE GREAT
CIRCLE PLANE « A GAUSSIAN LEAST SQUARE FIT IS ALSO CALCULATEOD
o IT SHOULD BE NOTICED THAT THE ELEVATIONS ARE ALWAYS REFERED
TO THE CHORD JOINING THE TRANSMITTER -AND THE RECEIVER . THE
ORIGIN OF THE COORDINATE SYSTEM IS CHOSEN TO BE AT THE
RECEIVER LOCATION FOR CONVENIANCE « THE PROGRAM ASSUMES THAT
THE DIFFERENCE IN THE ANTENNAS ELEVATION NO MORR THAN .5 DEG.
DESCRIPTION OF PARAMETERS

()] $ PATH LENGTH
THPW 2 HALF POWER BEAMWIDTH OF THE ANTENNAS .
IDENTICAL TRANSMITTING AND RECEIVING ANTENNAS
ARE ASSUMED .
PHT +PHR ¢ ELEVATION OF THE TRANSMITTING AND RECEIVING
: ANTENNAS RESPECTIVELY
TAU(N) DIFFERENTIAL ODELAY

-2 3R~ - - IR - - B - 2K- - - IR 3K BE 3R 3R 0 - K - 3K - 3R 3K - BRI - R R R R

ZMC(N) 0 ZMS(N) MID SHELL HEIGHTS FROM THE CHORD AND THE

N NN X-E-E-N- - R-N-I-IE- N -2 B2 8- B0 NN - B3 - B BE - BN - 2L - AR - JE- B K- 0 -

GLL
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CORRESPONDING TO
THE X=-BOUNDARIES
CORRESPONDING TO
THE Z=-BOUNDARIES
CORRESPONDING TO

X1P(J)» X2P(J)

21P(J)»22P(J)

-SUBROUTINE CALL UNEQU
SUBROUT INE CALL POWER

2% 2 W 3 33N LE NN

% e e e 3333 23k e 23 2 e e e e e s e o o o e el o s e =k 2 e e o e 3k o e 3 e {0 e 30k Xk e e o K e 0 e e e G e o0 {x x e e e X
REAL 2C(130)+2S(130)»TAU(130)sD2¢130),P0O(30)»ZMC(130),X2¢8130),
+X2¢130)eYP(30)+sZP(30),Z1P(30)+Z2P(30)sX1IP(30)sX2P(30)PL(30)»

+YP2(30)
P1=3.14159265

D=406.0

THPW=2.6%P1/180
HPW=THPW/2
PHR=D/17000.+1 40%P1/180.
PHT=D/17000.+2.5%P1/180.
IN=TAN(D/17000.)

SN=S IN(D/17000. )
RG=8500.%TN

XC=8500 « *SN

2GC= XCHTN

Z5C=85000 =XC/TN
DELTA=0.2

TAU(1)=0.0

ZC(1)=26C
Z2S(1)=2C(1)-2SC

PRINT 1

. SURFACE RESPECTIVELY

DIFFERENTIAL ISOTROPIC SCATTERED POWER

DZ(N) ¢ SHELL THICKNESS
YP(J) $ CROSSPATH DISTANCE
PO(J) H

CROSSPATH DISTANCE YP(J)
OF . TIME DELAY SHELL
CROSSPATH DISTANCE YP(J)
OF TIME DELAY SHELL

‘CROSSPATH DISTANCE YP(J)

FORMAT(*1°+°TAP 1*92X+*TIME DELAY*s2X+s*MID HEIGHT ZMC® »2X»
+'MID HEIGHT ZMS*®+2X»*SHELLLTHICKNESS® »/)

DO 10 1=2,101

2R 2R K- K- JR- 2R - 20 2R - 2K 2K - 2R R - N - )

SLL
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2/70%)20+(r)dz=tr)diz

VOX+(f)deX=(r)dex

VOX+(P)DIX=(rIDTIX

' (M IXZCF) AT XE(N) 2X=( P )d2X
. IHA/ CIHAOR( T=F ) o THA ) H (M) IX=(r) dTX
(IHAAE(T =) ISODIHINIINZ=(r)d2Z
CIHAQXCT= ) INISEIN) DNZ=(r)dA

12¢1=r O€ 0Q

VOXe(N)2X=( Ny eX

VIXe(N)TX=(N) TX

02/1Hd=1IHda

(ENIDHZ/ZLTAINISYY=IHd
(LTZHLTZe(NIINZEINIINZ ) LUHOS=1TA

(VIZ%2)/ (VUEVH=VIZHVIZ 4+ (NI DNZH(NIDOHZI=112

I13HS AVI3Q 3IWIL HLIM SNY¥3LLVd o
VNN3LINV 60«€ 3HL 30 NOILD3SYILINI Z GNV A 3IHL 34V LTZ ANV LTA o

NIHLCCEVHEVYIZI® L1 (NIDNZ ) ANV ((VH=VIZ) *L19° (NIDNWZ) Y41
06¢ 1= 02 0q

2/7C1Z=-62)=VY

(YHAINVYL/VDZ=VIX
(Y¥Hd=1Hd~TdINIS/(4Hd)NISH(LHI) NISEA=VDZ
(5°84 s =CZXe6XEO HhQ A4 ¢ =2ZX s $XE* ¢

eowu..ucN.axn.e.OL..nnN..xn.eocm..uNN..xn.e B4¢e=T24¢X2%: Ta)1VHWYOS 9
an.NNX.cN.NNamnoan ¢S ANIdd

NOI LD3Y¥IG X 3IHL NI mm~m<oz:om 3HL 33UV €ZX ¢2ZX ° NOILD3YIQ 2 J

3HL NI 3WNT0A NOWWOD 3HL 40 SITYVANNOE IHL 3UV HZ€Z°2Z°12Z d

(SXOIXCEZXNCBIX O HZ4C242Z¢TZ4ONZ ¢ LHA YHC* KdH* Q) NDINA TTIVD
. ANNILNOD 01
(IXCT4HLAIES XD G LACXICET® s o) LVHIOS e

antn-Na.mzN.au I)IJNZe(IINVLICT=-142 LNIYd

JSZ-(T-1)INZ=SHZ

0% ((I)OZ+(T1~1)DZ)=(T=1)JNZ

(1-3)02-(I)D2=(1-1)2G

JSZ~-(1302=(1)S2

(2RaIX=SH( (IINVLHGT *+9YH) ) LHOS=(1)DZ

NI+ (T=-IINVL=(IINVYE
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(s NaNgl

Z2P(J)=2zP(J)*DZ(K)/2

CONTINUE

CALL powen(o.Tupu.pua.pur.xxp.xzp.zxp.zzp.vp.pO)
PRINT 3sKeZMC(K)»Z1TsY1T»PO(1)
FORMAT(*1%52Xs1392Xs4(F11e7+3X))

NORMALIZING THE DIFFERENTIAL PDNER TO THE GREAT CIRCLE POWER

YS=PO(1)

DO 40 J=1,21

PO(J)=PO(J)/YS .

PRINT 4»YP(J)»PO(J)

FORMAT(®0*92X92(F11.792X))

IF(JNEL21)THEN

PL(J) IS THE LOGARITHM OF THE DIFFERNTIAL SCATTERED POWER
YP2(J) IS THE CROSSPATH DISTANCE SQUARED BOTH PARAMETERS ARE
USE IN THE LEAST SQUAR GAUSSIAN FIT

PL(J)I=ALOG(PO()))

YP2¢J)=YP(J)IXxYP(S)

ENDIF

CONTINUE y '
GAUSSIAN LEAST SQUARE FIT TO THE DIFFERENTIAL SCATTERED POWER
SPL=0.0 ’

SYP2=0,0

SPLY=0.0

SYP22=0.0

DO 55 1I=1,20

SPL=SPL+PL(1)

SYP2=SYP2+YP2(1)

SPLY=SPLY+PL(I)XxYP2(1)

SVP22“SYP22*YP2(I)*YPZ(I)

CONTINUE

Al IS THE REQUIRED PARAMETER TO BE USED EQUATION 3.21
AI=(SPLY~"SPL%SYP2/20.0)/7¢SYP22=SYP2:xSYP2/20.0)
BO=(SPL/720.,0)=(AI:xSYP2/20.0)

BO=EXP(BO)

PRINT»AlI+B0

8LL
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ENDIF

CONTINUE

STOP .

END
***##**************#****#*******###*#**#***###**#*****##*#**#*#B
% THE SUBROUTINE UNEQ CALCULATES THE GREAT CIRCLE X BOUNDARIESiﬁ
% FOR EACH TIME DELAY SHELL « IT ALSO CALCULATES THE BOUNDARIESﬁ
% OF THE COMMON VOLUME ITS INPUTS ARE THE PATH LENGTHsTHE &
% BEAMWIDTH»THE ANTENNA ELEVATIONS AND THE MID SHELL HEIGHT t
% ' s
%3x 206 330 30 20k 300 ¢ k206 33 30k e o 50k 20 2 30x e e e e o 50 e 7 30k e 2k 3 3 e ¥ 20 3k ¥ 3w o0k ok o 1 Xz o 3 30k 3k e o o e o o0 e o ok ok ok ok ofe ok ks 4%
SUBROUTINE UNEQU(D sHPWsPHRePHT 9 ZMC 921922023924 9X229X23sX1X2)
REAL ZMC(130)¢X1(130)¢X2(¢130)

SR=SIN(PHR)

ST=SIN(PHT)

CSR=COS(PHR)

CST=COS(PHT)

TS=TAN(HPW)

AR=SR¥SR=(CSRXCSRIX(TSXTS)

AT=STHST>(CSTRCSTIX(TSXTS)
Zl-D*(TAN(PHR’HPN))*(TAN(PHT'HPV))/(TAN(PHT HPW) +
+TAN(PHR=HPW))

Z2= D*(TAN(PHR’HPN))*(TAN(PHT*HPW))/(TAN(PHR’HPH)*
+TANCPHT +HPW))

Z3=DX(TANC(PHR*HPW ) ) X( TAN(PHT=HPW))/(TAN(PHR+HPW) +
+TANCPHT=HPW))

Z24=D%(TAN(PHR *HPN))*(TAN(PHT*HPH))/(TAN(PHR*HPH)+
*TAN(PHT+HPW)) :

X22=22/TAN(PHR=HPW)

XZ3=Z3/TAN(PHR+HPW)

DO 30 I=1,100.

X161)=0.0

X2¢I)=0.0

IF((ZMC(I)-GT Zl)oAND-(ZMC(I)oLE ZQ))THEN

6Ll
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JIAN3

TUxX=21X%

3813

cYux=21x

NIHL (28X L9° THX) J)

o0 0L 0O

4IGN3

TLX=21X

eiX=1¢X

3873

eiX=21X

TAX=TIX

NIHLC(2LX®19°TLX) 12

00% 01 09

JIAN3

TiX=21X

: 38173

' . 2LX=21X
NIHL(2AX*19°TLX) 1

4IAGN3

cUX=11X

3813

TUX=11X

NIHL (2YUX*49° TYX) I

00€ 0L 09(LZ*39°(1)IDNWZ)Yd1)

00Y 0L 09(22°37°(1)DHZ) 4l

002 OL O9CCEZ° LI (IIDNZI ANV (2Z°L9°(1)IDNZ)) 4}
. CLVYRS)/7((LO%IVEh=-L0%19)140S=18-) =21X
(LVE2YI/Z7C (L% AV -1Q%L00) LUDS +LG=) =T LX
(UYR2 ) 7 LHIRUY Rh= HAXUB) LYDS «HE8=) =2YX
CUYEZY 7 ((UOX UV = YEXYHEA) LUOS +HE=- ) =TUX
18%90H=LVX90H%E90H+1D=1D

’ 1V2004%2-10=18

l9=18
..mhémh.*ahm*hm.nhmu*hmuoﬁauyu:N*an.uzN 42
(SLxSL4+T)RLSIKLSH(I )ONWZE2C=10
-nwr%whe*.mm&mmvnmmu*mmuoﬁaNvuznﬁam.QZN O
(SLHSL+T)RYSOUUSH (1) INZ%2C-=E

00¢

ooe

00T
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(2
(-

(s NsNaNeNaNesNogNg)

IF (XT1.GT.XT2) THEN

X11=XT1
ELSE

X11=XT2
ENDIF
X1(I)=xX11
X2¢1)=X12
ENDIF
CONTINUE
RE TURN
END '
3 e e 8 e 0k 02 e 3 0k 3 0 08 2 o 3 3t a3 3k 33 5 0 0 o e e o o ok o ok ok o o0 e 5k o ok ke ok ok o e e e R ox e e ox X% X
THE SUBROUTINE POWER CALCULATES THE DIFFERENTIAL ISOTROPIC %
SCATTERED POWER AT DISCRETE CROSSPATH DISTANCES FOR EACH %
TIME DELAY. SHELL . ITS INPUTS ARE THE X AND Z BOUNDARIES *
FOR THE CORRESPONDING DISCRETE CROSSPATH DISTANCES TO BE USED %
AS "INTEGRATION LIMITS s THE HALF-POWER BEAMWIDTH.AND THE %
ANTENNAS ELEVATIONS « THE PROGRAM UTILIZES A FIVE=POINT *
GAUSS~LEGENDRE INTEGRATION TECHNIQUE . , %
L T b N e L L R R T
SUBROUTINE POWER(D» THPWsPHRsPHT s X1P s X2P 9 Z1P » Z2P4 YPsP0O)

REAL X1P(30)»X2P(30)+Z1P(30)s22P(30)sX(5)+Z(5)sA(5)sB(5),
+YP(30),P0(30)

A(1)=.236926885

A(2)=.47862867

A(3)=.568889

At4)=A(2)

AL5)=AL1)

B(1)=-0.9061798

B(2)=~0.5384693

B(3)=0.0

B(4)=-8(2)

B(5)==Bl1) |

EX=2/((»863THPW)%:2)

PHH=PHR %42 +PHTX%2

L K- 2R 20 - K- K- 2N -4

L2l
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AULN3S

aN3

NYNL3Y

ANNI LNOD

Y/ ((NDACZ=(NIATZI (LW )IdX~ (W) DT X)%x(WIOd=( W)Od
INNTANOD

ANNILNOD

X4x(CIVE(I)V+(WIOD=(HW)Od

aNm\uwﬁaum\n-*-hooo¢o.n*§a.mzhvzumou\«aéamm<uaxm Xd
XQEXWAR(ddA+ () 2% (r )2 ) LUOSHAXS *=SHL

ddA+ () Z%(r) Z+XXWA/ 1=2Y

ddA+ (L) ZX(F)Z+XXA/7T=1Y
(IXAHYHA+XWAXLHA) % () Z%2= ( XXWNA+ XXA) X (ddA+( ) Z% (L) Z)+HHC )%xX3==SYY
o 0°0=Xd

se1=r 0S Q4

XWAEXHA=XXWA

((I)X=Q)/7¥=XHa

XQ%xXa=XXa

(I)YX/71=Xa

G'I=I S%» 0Oa

3ONI LNOD

((W)d2ZH+(H)IDTZIHS 0+(1)BX((W)D2Z=-(WIDTIZIHS°0=(1)2
aazvamx+az.nqxv§mo+nnom§nazvamx (W)DIX )G =(1)X
S¢1=1 0% 0OQ

(H)dA%(W)dA=ddA

0°0=(W)Od

12¢1=W 09 DA

09

Sh
0S

oY
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e 208 33 8 38 e 33 300 e 308 2 2 23 3 3 e e e e a3 0k 30 e 2 a2 0 o0 o 5 ¢ e e o 5 5 2k a3k 5 a0k 5 e a0 5 o e o 0k o S e ok ek ok o

% MAIN PROGRAM #2 USED FOR EQUAL %
% ANTENNAS ELEVATION %*
%* . . %
- % PURPOSE . : : o : : *
% THIS PROGRAM IS USE TO CALCULATE THE DISTRIBUTION OF THE®
% ISOTROPIC SCATTERED POWER AS A FUNCTION OF THE CROSSPATH %
% DISTANCE FOR EACH TIME DELAY SHELL IN A TROPOSPHERIC SCATTER =
% LINK UTILIZING RAKE RECEIVER « ALL THE PARAMETERS AND THE %*
% COMMENTS EXPLAINED IN MAIN PROGRAM #1 FOR UNEQUAL ELEVATIONSX%
¥ CARRY THE SAME INTERPRETATION IN THIS PROGRAM AND WILL NOT &*
* BE EXPLAINED HERE o THE COORDINATE SYSTEM 1S CONVENIENTLY %
% CHOSEN TO BE AT MIDPATH . IT SHOULD BE NOTICED THAT THE %
% ANTENNAS ELEVATION IS EQUAL .. ]
] %
% SUBROUT INE CALL EGQUAL - 0
% SUBROUTINE CALL POVWER %
% ' *
23 e e Xp 308 3 3 30 e e 06 e e 3 e e e e e e e e e o e o e e e o e e e e o o e o 3 2 e sk e o o e e e e e e o o o e ok Qe e e

REAL ZC(130)+2S(130)»TAU(130)+DZ¢130),P0(30)52ZMC(130)+X1(130)»

+X2(130)sYP(30)+sZP(30)5Z1P(30)+2Z2P(30)sX1P(30)sX2P(30)sPL(30) >

- 4YP2(¢ 30)

PI=3.14159266
0=2406.0
THPW=2.6%P1/180
HPW=THPW/2
PHR=D/17000, +HPW
PHT=PHR
TN=TAN(D/17000.)
SN=SIN(D/17000.)
RG=8500+%TN
XC=8500+%SN
ZGC=XCHTN
25C=8500. =XC/TN
DELTA=0.2
TAU(1)=0.0

eel
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_INNTLNOD

27 (N)ZA= () dZz=(f)d22

27(N)2a+(C)dZ=(r)dT2

(M) IXZC0) T XHEN) 2X=( P ) dZ X

THA/ (THAQ%( T=r) < THA ) XD TX=( I dTX

(IHAAE (T~ ))SOIX(NIDHZ=(r)IHZ -
(IHAA%(T=P D INISEINIDHZ=(FIdA

. t2¢1=C 0€ 04Q
= 02/1Hd=1HdQ
(UAIDWZ/ZL TAINISYY=THd

(LTZ0LT Z= (NI INZXCHIDWZILYOS=1TA

(VZ%2) /(VUAVH=VZRVZ4+ (NI DHZH(NIDNZI=LTZ
NIHLCCYZ LT (NIDNZI ANV (TZ 1D (NIDNZ) I SI
_ . 06°t=3 02 0Q
C(MdH=-YHAINV L= (MdH+UHAINVL) (470 ) =VY"
(YHDINVLR(2/70)=V2

(9°84¢ ¢=CZX s *XE S ©°Q4® 4=2ZXs *XE ¢4

HoBAS e=HZ I *XE* V"8I 4=EZ e *XE' U BI* ¢=CZe*XE U G4 ¢=TZ¢*X2% T4 )LVHYUOS
. : CZXS2ZX*YZOCZ92Z4T1Z G LINIY¥d
.Nx.dx.n~x.unx.cu.n~.-..~.u:~.z:a.xa:.o.4<:cm WO

3NN ILNOD

...xo..c.»m.n.xo.c.bu.xo.nn.. « ) LVHYHOS
(T-1)ZQ*SHZ*(T=-TIDNZ*(I)NVL*T=-1%2 LINI¥d
3SZ-(T=1)DWZ=SKWZ
S°0%((1)DZ+(T=-1)D2)=(T=1)DNZ
(T=1)D22-(1)DZ=(1-1)2Q

2SZ«(1122=(1)S2

(2H%IX=2x(( I)NVLRGT*+9Y) ) LYOS=(1)D2Z

. VL3a+(T=-1)nVL=(I)NVL
101¢2=1 Ot 0Q

(/7 eSSANNDIHLTIIVIHS s * XE* ¢ SHZ LHOIIH QIWe+
. *XE¢eDWZ LHOTIH GIWeSXE®eAVIIA AWILs*X2%e## dVLe® s Te)LVHYOS
T INI¥d

282-(1)22=(1)82

29Z=(1)22
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CALL POWER(D.THPV.DHR.FH?.XIPOXZPQZIPOZZPOVPOPO’
PRINT 3sKesZMC(K)oZ1ToY1ToPO(1):
FORMAT(*1°92X91392X94(F11.703X))
Y¥YS=P0O(1) v

DO 40 J=1+21

PO(J)=POCJ)IZYS

PRINT 4.YP(J)PO(J)
FORMAT(®0®92X92C(F11.792X))
IF(JNE+21)THEN
PL(J)=ALOG(POD(JY))

YP2C J)=YP(J)XYP(J)

ENDIF

CONTINUE

SPL=0.0

SYP2=0.0

SPLY=0.0

SYP22=0.0

D0 855 1=1,20

SPL=SPL+PLI(L)

SYP2=SYP2+YP2(1)
SPLY=SPLY+PL(1)%YP2(I)
SYP22=SYP22+YP2(1)%YP2(I1)

CONT INVE
AI={SPLY~SPL%SYP2/20.0)/7¢SYP22~SYP2:2xSYP2/20.0)
BO={SPL/20G .0 )=(AIXSYP2/20.0)

BO=E XP(BO)

PRINTsAI»BO L

ENDIF ST

CONTINUE ST

sTOP : o

END
#*#*#**#***********#*******#**#******###****#0#****##*#**#*#**#
% THE SUBROUTINE EQUAL CALCALATES THE X AND z BOUNDARIES %
% OF EACH TIME DELAY SHELL CORRESPONDING TO THE GREAT CIRCLE =
% PATH o IT ALSO CALCULATES THE BDUNDARIES OF THE COMMON %*
% VOLUME . *

~ 3t e ek ko e ke e e o 0 e o ke e s o e e e ke e ek ke o ok e e ka0 Gk e e ke

- 62l
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~SUBROUTINE EOUAL(D.HPN-PHR-ZMC.ZX-ZZ023-24.XZZ-XZ3-X1OXZ)

REAL X1(130)eX2(130)9ZMC¢130)
S=SIN(PHR)

CS=COS(PHR)

TS=TAN(HPW)

Al1=S%S=(CSHCS)R(TSLETS)
21=(D/2)TAN(PHR=HPW)

22=D% ( TAN(PHR~ HPW)*TANCPHR*HPW))/(TAN(PHR-HPH)*TAN(PHR+HPW))
23=22

24= (D/Z)*TAN(PHR’HPH)
X22=22/TAN(PHR+HPW)
X23=22/TAN(PHR=HPW)

DO 20 I=1,100

X1¢1)=0.0

X2¢1)=0.0

IF(C(ZMCUIIeGTeZ1)eAND ¢(ZMC(I)eLTeZ4))THEN
B1=2«=2%ZMC(I)%SXCSHL 1+TSHTS)
Cl=ZMC(I)%HZMCEI)%*(CSECS= (SASIK(TSHETS))
X11=(=B1+SAQRT(B1xB1-4%xA1%xC1)) /(2%A1)
X12==(B1/A1)=X11

X11=ABS(X11-D/2)

X12=ABS (X 12~D/2)

IFEX11GT «X12)THEN

X11=X12

ENDIF

X1¢1)=X11

X2(1)=-X11

ENDIF

CONT INVE

RETURN

END

YA



OO ANOOO

40
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% SUBROUTINE POWER CALCULATES ‘THE DIFFERENTIAL SCATTERED POWER:%
% CORRESPONDING TO A DIFFERENTIAL CROSSPATH DISTANCE .ITS t]
% INPUTS ARE § THE PATH LENGTH,THE HALF-POWER BEAMWIDTHsTHE %
% THE ANTENNAS ELEVATION» AND -THE X AND Z BOUNDARIES OF THE %
% CORRESPONDING CROSSPATH DISTANCE THE SUBROUTINE UTILIZES A %
% FIVE-POINT GAUSS~LEGENDRE NUMERICAL INTEGRATION TECHNIQUE. %
x ‘ : %

*

%

£ 332 0k e 308 e 0x 00 238 o0 08 ok 0k 0k 9 K <0k 0 2 ok o e 0k e e o e e o o e o 2 o a0 e o e 5 ek a3k e 5 ok e ook o e e ok o o ok e e e s %
SUBROUTINE POWER(D o THPWs PHRoPHT s X1P s X2P» Z1P»Z2P s YP»PO)
REAL X1P(30)eX2P(30)»Z1P(30)-Z2P(30)sX(5)92(5)9A(5)+B(5),
+YP(30),P0O¢30)

A(1)=,236926885

A(2)=.,47862867

A(3)=.568889

ACa)=A(2)

A(5)=A(1)

B(1)=-0.9061798

B(1)==-0.9061798

B(2)==0.,5384693 .

8(3)=0.0

B(4)=-B(2)

B(5)=-B(1)

EX=2/((+85%THPW )xi2)

P HH=PHRAH2 +PHT X 2

DD 60 M=1,21 o

POIM)=0.0 : .
YPP=YP(M)XYP (M)

DO 40 I=1,5

XCI)=eSX(XIP(M) = xmu.z..&w.~.+.m*.x»v.z,+xmv.zw,

Z(1)= o.m%.Nuv.zuunmv.z.-#monuto.mﬁ.N»v.z.+N~v~zu.

CONT INVE

DO 45 1=1+5

DMX=e25%D%D=X¢ I3 EX(1)

DOX=DMX+2%X(1)%X ()

DM XX=DMXXDMX

L2l
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aN3
NYNL3IY
3NNILNOD 09
2/7((W)H2Z=(WIHTZ)E(HIDIXX(WIOd=(H)Od
3NNTILNOD Sh
INNI LNOD 0s
XIH(FIVXLIIV4IW)IOd={ W) Od
(RU/7TIXCTYU/TIR((LO9999°EX( (SHLINIS) I/ TIX(SUV) dXIA=XS
XHQ/7C ddA +(F I ZR(F) 29 LUHOSHARG*=SH L
ddA+ () Z&(rIZ+dda=2y
ddA+(FIZH(FIZ+NNO=TY
(NO/(F )ZxLHd%2=dA/ (1 I ZxUHA* 2= X XHA/ XA ddA + 2% () Z Y2+ HHA ) XD ==SYV
A S : . 0°0=Xd
set1=r 0§ 00Q
Na=NQ=NNQ
daxdd=dda
(I)X%2-da=Na
(1) X+Q%S*0=da
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X. APPENDIX C: WATFIV COMPUTER PROGRAM FOR CALCULATING
THE DELAY POWER SPECTRA BASED ON AN
ANISOTROPIC SCATTERING MODEL



AN ODDONDOOOOHNONNND

e e e e e 3 e e e e 2 ok s K e e e el 2 e e e o e e e e X0 2 2 5 o e 5 2 5 1 X 5 a5 s 8 s ok o e o ok (ke ke e o ofe ko

PURPOSE

MAIN PROGRAM

NORMAL IZED TO UNIT AREA. ALSO THE PROGRAM CALCULATES THE
DIFFERENT PARAMETERS OF MULTIPATH SPREADs MEAN DELAY» SKEW

»AND EXCESS.

IT CALCCULATE THE DELAY POWER SPECTRA BASED ON

AN ANISOTROPIC SCATTERING MODEL PRESENTED IN CHAPYER IV .

DESCRIPTION OF PARAMETERS

N

3%

3

b

%

%

¥

x

&

-3

&

]

*

%

¥ D

* R

x  HPBW

%

% ODELTA
% GRTs» GRR
*
%*
%*
%
%
&
%
*
¥
%
o
%

ELT» ELR
TAU(N)

X(N)
P(N)

SUBROQUTINE
SUBROUTINE

e e 3o e 3 20 Ke el K0 Ko o e e e o e e e sl el o s ale e o e e e e o sl otk ofe o e e e e e eale e e e el o ool e e

¢ NUMBER OF POINTS FOR WHICH THE DELAY POWER

SPECTRUM IS CALCULATED

EVEN INTEGER

PATH LENGTH IN KM
EFFECTIVE EARTH RADIUS IN KM

IT IS CHOSEN TO BE

tHALF POWER BEAMWIDTH OF THE ANTENNAS o IDENTICAL
TRANSMITTING AND RECEIVING ANTENNAS ARE ASSUMED
¢tRESOLUTION OF THE DELAY POWER SPECTRUM

$GRAZING ELEVATIONS OF BOTH THE TRANSMITTER AND
THE RECEIVER ABOVE THE CHORD RESPECTIVELY
tELEVATIONS OF TRANSMITTING AND RECEIVING ANTENNA

BEAMS ABOVE THE

$IS THE TIME DELAY WITH RESPECT TO THE HORIZON
¢IS A NORMALIZED DELAY PARAMETER
$IS THE VALUE OF THE DELAY POWER SPECTRA CORRESP-

ONDING TO DELAY TAU(N)

CALL
CALL

POWER
SIMPSN

%
i

TO EVALUATE THE DELAY POWER SPECTRA- OF TROPOSCATTER LINKSx*

%
%
*
£
*
£
%
%
%
2
%*
*
]
£
%
&
¥

%
%*
%
]
*
]
<
%
%
%*
4

REAL P(512)sX(512)sPT(512)sPT2(512),PT3(512)»PT4(512),TAU(512),

+ANIS(512)

octL



‘N=128

M=7

N1=N=-1
Na2=(2%%M) /2
PI=3.141592654
D=406.0

R=8500.0
HPBW=2,6%P1/180.0

-THE MINIMUM NORMALIZED DELAY BASED ON SMOOTH EARTH HORIZDNS

DMIN=D%D/ ( 8%R¥%R)

DELTA=0.02 :
GRAZING ELEVATIONS ABOVE THE CHORD BASED ON SMOOTH EARTH
HORIZONS

GRT=D/(2%R)

GRR=D/ (2%R)

ELT=GRT

ELR=GRR

DO 10 I=1,N .

TAUCI)=(1=-1)%DELTA

XU1) =DMIN+0+3%TAU(I)/D

THE AN ANISOTROPY PROFILE IS INSERTED HERE AS THE MATRIX
ANIS(N) CALCULATED FOR EACH TIME DELAY :

"DO 200 I=1,N

ANIS(X)=1+8%TAU(I)
CALL TO SUBROUTINE POWER TO CALCULATE THE DELAY POWER SPECTRA

CALL POWER(HPBW sX+sELTs ELRsGRT»GRRsNsP»sANIS)

PRINT 1

FORMAT (%1° ,*POINT#",4X s "NORMLAIZED DELAY®*s15Xs *ZDPOWER® )

DO 20 I=1,N

PRINT 39IsX(I)HsP(I)

FORMAT(® *91I3:6X9E14e5914X9E14.5)

CONTINUE

CALL TO SUBROUTINE SIMPSN TO CALCULATE THE AREA UNDER THE DELAY

Let



40

Nnoon

an

POWER SPECTRA

CALL SIMPSN(PsDELTA»N1+5P)

PRINT» *AREA UNDER DELAY POWER SPECTRA', -SP
PRINT 5

FORMAT(*1*»"POINT#* +2X»*TIME DELAY®»9Xs *'NORMALIZED DELAY?®*,13X»

+*NORMALIZED ZOPOWER?®)

DO 30 I=1N

P(1)=P(1)/SP

PT(I)=P (I )xTAU(I)

PRINT 7oIsTAU(I) oX(I)eP(1I)

FORMAT(® *9I346X9sF5¢3014XsEL14.5+14XsEL14.5)
CONTINVE

CALL SIMPSN(P.DELTA,N1,SP)

CALL SIMPSN(PTsDELTASN1»SP1)

00 40 I=1,N

XSP=TAU(1)~-SP1

PT2(1)=P(1)(XSP%xX2)

PT3(I)=P(I):x(XSP%5x3)

PT4(I)=P(I)x(XSPx&4)

PRINT 9

FORMAT(*1 ', *AREA®* 910Xe *CENTROID®* 98Xy *2ND MOMENT ' 95X *

+5Xe* EXCESS *+5X» *"MULTIPATH SPREAD®)

CALL SIMPSN(PT2,DELTAsN1,SP2)
CALL SIMPSN(PT3+DELTAINL1»SP3)
CALL SIMPSN(PT4+DELTA»N1,»SP4)

THE MULTIPATH SPREAD PARAMETER
PSP=SQRT(SP2)

SKEW L)

THE SKEW PARAMETER WHICH MEASURE THE ASYMMETRY OF THE DELAY

POWER SPECTRA
BETA3=(SP3/5P2%k1 ,5)

THE EXCESS PARAMETER WHICH MEASURE THE PEAKNESS OF THE DELAY

POWER SPECTRA
EXCESS=(SP4/SP2%%2)
PRINT 11sSPsSP1+sSP2+BETA3I+EXCESS PSP

cel
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0°0=(M)d

Né¢2=X 02 04
Y13LY T3+ L3¢ L13=AT
0°0=(1)d

0°*€/0°11=4
(MAdHXMAdH:9E°0) / T=X2
(1)g-=(9)a
(2)g-=(g9)8
(€)e-=(»)a
2hise9h2e6°=(€)a
G98£602199°=(2)8
t9816198€2°=(1)@
(rv=(9)v

(2)v=(9)Vv

(E)v=(H)YV
h2oHH2ETLI=(E)V
0ELSTOLO9E=(2)V
IHEGETELOH =(T)V

NOILVHOILNI TIVOIHIAWNN 3IHL 40 SLNVLISNOD
(2TG)SINVE(OT)A(OT)IVI(2TIGIX*(21G)d TVvIY
(SINVEdEN‘HYD® LYO*YTI LTI X MBdH) HIMN0d 3NI LNOYHENS
e 2022 e 2 2 e 20 e xr 0 e e e e e 50k e e o e e e o e e o o o e e e o el e o e o e e e e e eade e feaie e e e sl e e ke
x ’ %
& . * 3NODINHD3IL R
% NOILVYUOILNI TIWOIYIWNN LNIOd=-XIS JYANIOIN-SSNVY V SAZINILN YIMOd%
*3INILNOUENS IHAL °IdVHS NI NVISSAVO 38 0L QIWNSSV YV SVYNNILNV IHLX
¥ SINIOd AVI3Q dJO Y3GWNN 3HL ANV ¢ XIHLVW 3V1408d AJOYLOSINV 3IHL
% *SNOILVA3TN3 HKWV36 YIUINID 3IHL *SNOILVA3I ONIZVYHO 3IHL *HLQIM:x
¥ =WVIE@ YIMOd 4IWVH VNNILNV 3HL 3¥V SLINGNI SLI® SANIT HILLIVISOHOUL%
* L 404 VY1D3dS YIMOD AVTIIA 3HL SILAVINDIVD HIMOd IAINILNOYANS 3HL %
0030 e 3000 2 e 3 2 2 e e e e e o e o e e e e s e e e e e s e e o el sfeaenleeaeate sfeeadeteateael siele feade e e e e e
aN3
dois

((X9°9°6d4)9¢ /¢, 4)LIVHYOA

(SN

VUV UULDLUUOLUY

1t



30

20

s X2 NaXaNaNs

10

20

$SENTRY

SQ=SQRT (24X (K))

AL=GRT/SQ

BL=SQ/GRR

DO 30 I=1+6

XIP=0e6%(BL=AL)&B(I)4+0.6%(BL+AL)

X1=1/XIP

X2=X1P+X1

X22=XIPXXIP+X1%X 1 ,

ARS ==E X% (SQ:SQ%X22 - 2#S A% (ELREX 1 +EL TEX IP ) +EL V)

FX=EXP(ARS )X 13k ( 1/X25%%(T=2) )

P(K)=P(K)+A(T)%FX

CONTINUE

PUKI=PIKI%(1/ZX(K) 2 (14T/2) )% ( (BL=AL)/2)%(ANIS (K)2%2)

CONT INUE

RETURN

END ' , .

Kese e e ek sieleate ok iene e e e oot et seiede e ek e ek ek o ek e e et e RNk Qe e e okl etk sk ek

% THE SUBROUTINE SIMPSN CALCULATES THE AREA UNDER A CERTAIN CURVE
<IT UTILIZES SIMPSON NUMERICAL INTEGRATION METHOD «ITS INPUTS

&
£ %
% ARE THE VALUES OF THE FUNCTIONe THE NUMBER OF POINTSs AND THE STEP %
% SIZE x
g %

%

****#***********************#***####*************************#**#**#*
SUBROUTINE SIMPSN(PIDELTAIN1+SP)

REAL P(512)

K=N1=-1 ’
L=K=1

SPE=0.0

SP0=0.0

DO 10 I=2,Ks2

SPE=SPE+P(1)

DO 20 I=3sL e2

SPO=SPO+P (1)
SP=(DELTA/3)X(P(1)+42SPE+24SPO+P(N1))
RETURN

END

vel
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